9.方程log2(9x+7)=2+log2(3x+1)的解為x=0和x=1.

分析 由對數(shù)的運(yùn)算性質(zhì)化對數(shù)方程為關(guān)于3x的一元二次方程,求得3x的值,進(jìn)一步求得x值得答案.

解答 解:由log2(9x+7)=2+log2(3x+1),得
log2(9x+7)=log24(3x+1),
即9x+7=4(3x+1),
化為(3x2-4•3x+3=0,
解得:3x=1和3x=3,
∴x=0和x=1.
故答案為:x=0和x=1.

點(diǎn)評 本題考查對數(shù)方程的解法,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,短半軸長為1.
(Ⅰ)求橢圓G的方程;
(Ⅱ)設(shè)橢圓G的短軸端點(diǎn)分別為A,B,點(diǎn)P是橢圓G上異于點(diǎn)A,B的一動點(diǎn),直線PA,PB分別與直線x=4于M,N兩點(diǎn),以線段MN為直徑作圓C.
①當(dāng)點(diǎn)P在y軸左側(cè)時(shí),求圓C半徑的最小值;
②問:是否存在一個(gè)圓心在x軸上的定圓與圓C相切?若存在,指出該定圓的圓心和半徑,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面直角坐標(biāo)系中兩個(gè)定點(diǎn)E(3,2),F(xiàn)(-3,2),如果對于常數(shù)λ,在函數(shù)y=|x+2|+|x-2|-4,(x∈[-4,4])的圖象上有且只有6個(gè)不同的點(diǎn)P,使得$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ成立,那么λ的取值范圍是( 。
A.(-5,-$\frac{9}{5}$)B.(-$\frac{9}{5}$,11)C.(-$\frac{9}{5}$,-1)D.(-5,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖,則f(x)的解析式和S=f(0)+f(1)+f(2)+…+f(2013)+f(2014)+f(2015)+f(2016)的值分別為( 。
A.f(x)=$\frac{1}{2}$sin2πx+1,S=2016B.f(x)=$\frac{1}{2}$sin2πx+1,S=2016$\frac{1}{2}$
C.f(x)=$\frac{1}{2}$sin$\frac{π}{2}$x+1,S=2017$\frac{1}{2}$D.f(x)=$\frac{1}{2}$sin$\frac{π}{2}$x+1,S=2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=2sin2x的圖象向右平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后得到函數(shù)g(x)的圖象,若對滿足|f(x1)-g(x2)|=4的x1、x2,有|x1-x2|的最小值為$\frac{π}{6}$,則φ=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線C1:$\frac{{x}^{2}}{4}$-y2=1,雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,M是雙曲線C2一條漸近線上的某一點(diǎn),且OM⊥MF2,若C1,C2的離心率相同,且S${\;}_{△OM{F}_{2}}$=16,則雙曲線C2的實(shí)軸長為(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)據(jù)x1,x2,…,x8平均數(shù)為6,標(biāo)準(zhǔn)差為2,則數(shù)據(jù)2x1-6,2x2-6,…,2x8-6的方差為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若復(fù)數(shù)$\frac{4+bi}{1+i}$(b∈R)的實(shí)部與虛部互為相反數(shù),則b=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=$\frac{sinxcosx}{1+sinx+cosx}$的最大值為$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案