在△ABC中,已知sin
B+C
2
=sinA•cos
B+C
2
,給出以下四個(gè)論斷:
tanC
tanB
=1
②0<sinB+sinC≤
2

③sin2B+sin2C=1
④cos2A+cos2B=sin2C.
其中正確的是
 
(填寫序號(hào)).
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值,解三角形
分析:先利用同角三角函數(shù)的基本關(guān)系和二倍角公式化簡(jiǎn)整理題設(shè)等式求得cos
B+C
2
=
2
2
,進(jìn)而求得B+C=90°
進(jìn)而求得①
tanC
tanB
=tanC•tanC等式不一定成立,排除;②利用兩角和公式化簡(jiǎn),利用正弦函數(shù)的性質(zhì)求得其范圍符合,②正確;
③sin2B+sin2C=sin2B+cos2B=1,③正確;④根據(jù)A=90°可知cosA=1,利用同角三角函數(shù)的基本關(guān)系可知cos2B=sin2C=1,進(jìn)而進(jìn)而可知二者相等,④正確.
解答: 解:①由sin
B+C
2
=sinA•cos
B+C
2
,
得sin
B+C
2
=sin(B+C)•cos
B+C
2

即sin
B+C
2
=2sin
B+C
2
•cos2
B+C
2

∴cos
B+C
2
=
2
2
,
∴B+C=90°.
tanC
tanB
=
tanC
tan(90°-C)
=
sinC
cosC
sin(90°-C)
cos(90°-C)
=tanC•tanC不一定等于1,∴①不正確.
②sinB+sinC=sinB+cosB=
2
sin(B+45°)
∵45°<B+45°<135°,∴
2
2
<sin(A+45°)≤1,
∴1<sinB+sinC≤
2
,∴②正確.
③sin2B+sin2C=sin2B+cos2B=1一定成立,故③正確.
④cos2A=cos290°=0,cos2A+cos2B=cos2B=sin2C,所以cos2A+cos2B=sin2C.∴④正確.
綜上知③④正確,
故答案為:②③④.
點(diǎn)評(píng):本題主要考查了三角函數(shù)的化簡(jiǎn)求值.考查了學(xué)生綜合分析問(wèn)題和推理的能力,基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了參加首屆中學(xué)生合唱比賽,學(xué)校將從A,B,C,D四個(gè)班級(jí)中選出18名學(xué)生組成合唱團(tuán),學(xué)生來(lái)源人數(shù)如下表:
班級(jí) A班 B班 C班 D班
人數(shù) 4 6 3 5
(1)從這18名學(xué)生中隨機(jī)選出兩名,求兩人來(lái)自同一個(gè)班級(jí)的概率;
(2)若要求選出兩名學(xué)生作為學(xué)生領(lǐng)唱,設(shè)其中來(lái)自B班的人數(shù)為ξ,求隨機(jī)變量ξ的分布列,及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1(-1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)P滿足F1F2為PF1和PF2的等差中項(xiàng).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)F1作直線L交C于A,B兩點(diǎn),求AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程log2x+
1
logx+12
=1的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1
2
log330=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離公式為d=
|Ax0+By0+C|
A2+B2
,若點(diǎn)M(m,3)到直線4x-3y+1=0的距離為4,且點(diǎn)M在不等式2x+y<3表示的平面區(qū)域內(nèi),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{bn}各項(xiàng)均為正數(shù),若b3=1,bn2=bn+12,bn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若c=2,b=2a,C=
π
3
,則△ABC的周長(zhǎng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(x,y)在不等式組
y-1≥0
x-y+1≥0
x≤a  (a>0)
 表示的平面區(qū)域內(nèi),P到原點(diǎn)的距離的最大值為5,則a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案