14.已知等比數(shù)列{an}中a1=2,a4=16,數(shù)列{bn}滿足bn=1+3log2an
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和Sn

分析 (1)利用等比數(shù)列的通項公式即可得出;
(2)利用等差數(shù)列與等比數(shù)列的前n項和公式即可得出.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,∵a1=2,a4=16,
∴16=2q3,解得q=2.
∴an=2×2n-1=2n
∴bn=1+3log2an=1+3n.
(2)cn=an+bn=2n+(1+3n),
∴數(shù)列{cn}的前n項和Sn=$\frac{2({2}^{n}-1)}{2-1}$+$\frac{n(4+1+3n)}{2}$=2n+1-2+$\frac{n(5+3n)}{2}$.

點評 本題考查了等等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線的方程為$\frac{x+1}{3}$=$\frac{y-3}{-2}$,則該直線必經(jīng)過點( 。
A.(3,-2)B.(-3,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知幾何體的三視圖如圖,則這個幾何體自上而下依次是( 。
A.四棱臺,圓臺B.四棱臺,四棱臺C.四棱柱,四棱柱D.不能判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ex-mx+1的圖象是曲線C,若曲線C不存在與直線y=ex垂直的切線,則實數(shù)m的取值范圍是( 。
A.(-∞,-$\frac{1}{e}$)B.[$\frac{1}{e}$,+∞)C.(-∞,$\frac{1}{e}$)D.(-∞,$\frac{1}{e}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.拋物線y2=x上的點到直線x-2y+3=0的距離最短的點的坐標(biāo)是(1,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.有下列命題:
①若$\overrightarrow{p}$與$\overrightarrow{a}$,b共面,則$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R);
②若$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R),則$\overrightarrow{p}$與$\overrightarrow{a}$,$\overrightarrow$共面;
③若$\overrightarrow{a}$、$\overrightarrow$共線,則$\overrightarrow{a}$與$\overrightarrow$所在直線平行;
④對空間任意一點O與不共線的三點A、B、C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$ (其中x、y、z∈R),則P、A、B、C四點共面.
其中正確的命題為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)全集U={a,b,c,d,e},集合A={a,b,c,d},B={c,d,e},則集合∁U(A∩B)=(  )
A.ai9sv4xB.{a,b}C.{b,c,d}D.{a,b,e}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn,且a1=$\frac{1}{2},{a_{n+1}}=\frac{n+1}{2n}{a_n}$.
(1)求{an}的通項公式;
(2)設(shè)bn=n(2-Sn),n∈N*,若bn≤λ,n∈N*恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)$f(x)=\frac{x-1}{x+2}$在(-2,4)上的值域為$(-∞,\frac{1}{2})$.

查看答案和解析>>

同步練習(xí)冊答案