為了了解某校今年準(zhǔn)備報(bào)考飛行員的學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖所示).已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,第2小組的頻數(shù)為12,求抽取的學(xué)生人數(shù).
考點(diǎn):頻率分布直方圖
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)前3個(gè)小組的頻率之比為1:2:3,所有頻率和為1,解之即可求出第2組頻率,根據(jù)第2小組的頻數(shù)為12,可求得樣本容量.
解答: 解:前3個(gè)小組的頻率和為1-0.0375×5-0.012 5×5=0.75.
因?yàn)榍?個(gè)小組的頻率之比為1:2:3,所以第2小組的頻率為
2
6
×0.75=0.25.
又知第2小組的頻數(shù)為12,則
12
0.25
=48,即為所抽取的學(xué)生人數(shù).
點(diǎn)評(píng):本題主要考查了頻率分布直方圖,同時(shí)考查了學(xué)生的讀圖能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)(
32
×
3
)6
+(
2
)
4
3
-(-2013)0
(2)log23×log34×log48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-ln(x+1),g(x)=ax2-x+1.
(1)求證:1-x≤f(x)≤
1
1+x

(2)當(dāng)x≥0時(shí),若f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(3+x)+lg(3-x).
(1)求f(x)定義域;
(2)判斷的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=2sinθ,以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸Ox為x軸建立直角坐標(biāo)系,直線的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(為參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x2+bx+c
x2+1
,滿足f(1)=1,f(2)=
6
5

(1)求f(x)的表達(dá)式;
(2)判斷函數(shù)F(x)=lg[f(x)]在x∈[-1,1]上的單調(diào)性,并證明;
(3)若m∈R,求F(|m-
1
4
|-|m+
1
4
|)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=alnx+
1
2
x2(∈R).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若f(x)≥
1
2
x2+
1
2
x+m對任意的a∈(1,e],x∈(1,e]恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)a∈(1,e],g(x)=f(x)-(a+1)x,證明:對?x1,x2∈[1,a],恒有|g(x1)-g(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=(
1
3
 x2-3x+2的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=4sin(2x+
π
3
)(x∈R),有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于直線x=-
π
6
對稱;
②函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(-
π
6
,0)對稱;
③函數(shù)y=f(x)在(
3
,π)上單調(diào)遞增;
④由f(x1)=f(x2)=0可得x1-x2必是π的整數(shù)倍.
其中正確的命題序號(hào)為
 

查看答案和解析>>

同步練習(xí)冊答案