11.已知函數(shù)f(x)=x3-12x+8在區(qū)間[-3,3]上的最大值與最小值分別為M、m,則$\frac{M}{m}$等于( 。
A.-24B.-17C.-3D.3

分析 求出函數(shù)的導(dǎo)數(shù),求得極值點(diǎn),計(jì)算函數(shù)值,與端點(diǎn)處的函數(shù)值比較,即可得到最值,進(jìn)而得到所求.

解答 解:函數(shù)f(x)=x3-12x+8的導(dǎo)數(shù)為f′(x)=3x2-12,
由f′(x)=0可得x=±2,
由f(-3)=-27+36+8=7,f(3)=27-36+8=-1,
f(-2)=-8+24+8=24,f(2)=8-24+8=-8,
可得f(x)的最小值為m=-8,最大值為M=24,
即有$\frac{M}{m}$=-3,
故選:C.

點(diǎn)評 本題考查函數(shù)的最值的求法,注意運(yùn)用導(dǎo)數(shù),求得極值和端點(diǎn)處的函數(shù)值比較,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓x2+y2-6x+4y+12=0與圓(x-7)2+(y-1)2=36的位置關(guān)系是(  )
A.外切B.相交C.內(nèi)切D.外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)是定義在R上且周期為4的函數(shù),在區(qū)間[-2,2]上,$f(x)=\left\{\begin{array}{l}mx+2,-2≤x<0\\ \frac{nx-2}{x+1},0≤x≤2\end{array}\right.$,其中m,n∈R,若f(1)=f(3),則$\frac{1}{4}\int_{-1}^3{(mx+n})dx$=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為備戰(zhàn)“全國高中數(shù)學(xué)聯(lián)賽”,我市某高中擬成立兩個(gè)“數(shù)學(xué)競賽班”,經(jīng)過學(xué)校預(yù)選,選出40名學(xué)生,編成A,B兩個(gè)班,分別由兩位教師擔(dān)任教練進(jìn)行培訓(xùn);經(jīng)過兩個(gè)月的培訓(xùn),參加了市里組織的數(shù)學(xué)競賽初賽(只有經(jīng)過初賽,取得相應(yīng)名次,才能取得參加省統(tǒng)一組織的“全國高中數(shù)學(xué)聯(lián)賽”復(fù)賽資格),這40名學(xué)生的初賽成績的莖葉圖如圖:
市數(shù)學(xué)會規(guī)定:140分以上(含140分)為市級一等獎(jiǎng),135分以上(含135分)為市級二等獎(jiǎng),100分以上(含100分)為市級三等獎(jiǎng).
(1)由莖葉圖判斷A班和B班的平均分$\overline{{x}_{A}}$,$\overline{{x}_{B}}$的大。ㄖ恍鑼懗鼋Y(jié)論);
(2)按照規(guī)則:獲得市一等獎(jiǎng)、二等獎(jiǎng)的同學(xué)才能獲得省里組織的“全國數(shù)學(xué)聯(lián)賽”復(fù)賽資格,我們稱這些同學(xué)為“種子選手”,請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為稱為‘種子’選手”與班級有關(guān)?
 A班B班合計(jì)
種子選手   
非種子選手   
合計(jì)   
(3)在獲市級一等獎(jiǎng)的同學(xué)中選出3人,求至少含有1名A班同學(xué)的概率.
下面臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)$\frac{5-i}{i-1}$在復(fù)平面上所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}{(1-2a)x+5a,x<1}\\{lo{g}_{7}x,x≥1}\end{array}\right.$的值域?yàn)镽,那么a的取值范圍是( 。
A.(-∞,-$\frac{1}{3}$]B.(-1,$\frac{1}{2}$)C.[-$\frac{1}{3}$,$\frac{1}{2}$)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,正方形ABCD的邊長為3,M為DC的中點(diǎn),若N為正方形內(nèi)任意一點(diǎn)(含邊界),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值為$\frac{27}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等差數(shù)列{an}中,前n項(xiàng)和為Sn,a1>0,a1007+a1008=0,則當(dāng)Sn取最大值時(shí),n=( 。
A.1007B.1008C.2014D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-a|-|x+3|,a∈R.
(1)當(dāng)a=-1時(shí),解不等式f(x)≤1;
(2)不等式f(x)≤4在x∈[-2,3]時(shí)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案