2.已知焦點(diǎn)在x軸上的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{9}$=1的離心率e=$\frac{1}{2}$,則實(shí)數(shù)m=12.

分析 直接利用已知條件求出橢圓的幾何量a,b,c,利用離心率公式計(jì)算求解即可.

解答 解:焦點(diǎn)在x軸上的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{9}$=1,
可知a=$\sqrt{m}$,b=3,c=$\sqrt{m-9}$,
∵離心率是e=$\frac{1}{2}$,∴$\frac{c}{a}$=$\frac{\sqrt{m-9}}{\sqrt{m}}$=$\frac{1}{2}$,
解得m=12.
故答案為:12.

點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),注意運(yùn)用橢圓的基本量和離心率公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,正方形ABCD邊長(zhǎng)為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點(diǎn)F,連結(jié)CF并延長(zhǎng)交AB于點(diǎn)E.
(1)求證:點(diǎn)E為AB的中點(diǎn);
(2)求EF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)F1、F2分別是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1的左、右焦點(diǎn).若點(diǎn)P在橢圓上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$α,β∈(0,\frac{π}{2})$且$tanα-tanβ=\frac{1}{cosβ}$,則( 。
A.$3α+β=\frac{π}{2}$B.$2α+β=\frac{π}{2}$C.$3α-β=\frac{π}{2}$D.$2α-β=\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的點(diǎn)到直線4x-5y+40=0的最小距離為$\frac{15\sqrt{41}}{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.不等式|x+3|+|x-1|<a2-3a有解的實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:?x<1,都有l(wèi)og${\;}_{\frac{1}{3}}}$x<0,命題q:?x∈R,使得x2≥2x成立,則下列命題是真命題的是( 。
A.p∨qB.(¬p)∧(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐A-BCPE中,側(cè)面PAC為正三角形,∠ACB=90°,二面角P-AC-B為直二面角,PE∥BC且$\frac{PE}{CB}$=μ(μ>0),點(diǎn)M,N分別是側(cè)棱AE、AP上的點(diǎn),且$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ(0<λ<1)
(1)若λ=$\frac{1}{2}$,BC=2PC,且異面直線CM與AB所成的角為90°,求實(shí)數(shù)μ的值;
(2)若平面ABC與平面CMN所成的銳二面角為45°,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,其右焦點(diǎn)關(guān)于直線y=x+1的對(duì)稱點(diǎn)的縱坐標(biāo)是2,橢圓C的右頂點(diǎn)為D.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=x+m與橢圓C相交于A、B兩點(diǎn)(A、B與橢圓的左、右頂點(diǎn)不重合),且滿足DA⊥DB,求m.

查看答案和解析>>

同步練習(xí)冊(cè)答案