10.已知兩點A(-2,0),B(0,2),點C是圓x2+y2-2x=0上任意一點,則△ABC面積的最大值是( 。
A.3-$\sqrt{2}$B.$3+\sqrt{2}$C.$3-\frac{{\sqrt{2}}}{2}$D.$\frac{{3-\sqrt{2}}}{2}$

分析 求出圓上動點C到直線AB的最大距離,代入三角形面積公式,可得答案.

解答 解:∵A(-2,0),B(0,2),
∴直線AB的方程為:$\frac{x}{-2}+\frac{y}{2}=1$,即x-y+2=0,且AB=2$\sqrt{2}$,
圓x2+y2-2x=0的圓心坐標(biāo)為(1,0),半徑為1,
則圓心到直線的距離d=$\frac{3}{\sqrt{2}}$,
故C到AB的距離距離為:$\frac{3}{\sqrt{2}}$+1,
此時△ABC面積取最大值$\frac{1}{2}$×2$\sqrt{2}$×$\frac{3}{\sqrt{2}}$+1=3+$\sqrt{2}$,
故選:B

點評 本題考查的知識點是直線與圓的位置關(guān)系,點到直線的距離公式,三角形面積公式,難度不大,屬于基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知θ為第二象限角,且cosθ=-$\frac{3}{5}$,則tan(θ+$\frac{π}{4}$)=$-\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,則a的取值范圍是( 。
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線5x+12y+a=0與圓x2-2x+y2=0相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知ab≠0,點M(a,b)是圓x2+y2=r2內(nèi)一點,直線l的方程是ax+by=r2,則下列結(jié)論正確的是( 。
A.l與圓相交B.l與圓相切C.l與圓相離D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$P:|\frac{4-x}{3}|≤2,q:(x+m-1)(x-m-1)≤0,(m>0)$,若¬p是¬q的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,a,b,c分別是角A,B,C的對邊.已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B),試判斷該三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.執(zhí)行如圖所示的流程圖,則輸出的S的值為$\frac{1008}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行下列程序框圖,則輸出結(jié)果為( 。
A.413B.404C.397D.407

查看答案和解析>>

同步練習(xí)冊答案