分析 (1)由題意可化為a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立,又由f(x)的定義域為(-∞,1)知a=-[($\frac{2}{3}$)1+($\frac{1}{3}$)1]=-1;
(2)f(x)在x∈(-∞,1)內(nèi)恒有意義可化為$\frac{1+{2}^{x}+a•{3}^{x}}{3}$>0在(-∞,1)上恒成立;即a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立;從而解得.
解答 解:(1)∵f(x)的定義域為(-∞,1),
∴$\frac{1+{2}^{x}+a•{3}^{x}}{3}$>0在(-∞,1)上恒成立;
∴a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立;
又∵y=-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上是增函數(shù),
故a=-[($\frac{2}{3}$)1+($\frac{1}{3}$)1]=-1;
(2)∵f(x)在x∈(-∞,1)內(nèi)恒有意義,
∴$\frac{1+{2}^{x}+a•{3}^{x}}{3}$>0在(-∞,1)上恒成立;
∴a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立;
又∵y=-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上是增函數(shù),
故a≥-[($\frac{2}{3}$)1+($\frac{1}{3}$)1]=-1;
故a的取值范圍為[-1,+∞).
點評 本題考查了函數(shù)的性質(zhì)的判斷與應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com