14.若0≤x≤1,0≤y≤4,則xy2-y的最大值為12.

分析 0≤x≤1,0≤y≤4,可得0≤y≤4,0≤xy≤4,再利用不等式的性質即可得出.

解答 解:∵0≤x≤1,0≤y≤4,
∴0≤y≤4,0≤xy≤1×4=4,
則xy2-y=y(xy-1)≤4×(4-1)=12,
∴xy2-y的最大值為12.

點評 本題考查了不等式的性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.某幾何體是組合體,其三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{16}{3}$+8πB.$\frac{32}{3}$+8πC.16+8πD.$\frac{16}{3}$+16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知點A(0,-4),B(3,2),P為曲線y=x2上一點,要使△ABP的面積最小,則點P的坐標為(1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖,直線y=$\frac{1}{2}$x與拋物線y=$\frac{1}{8}$x2-4交于A,B兩點,線段AB的垂直平分線與直線y=-5交于Q點,當P為拋物線上位于線段AB下方(含A,B)的動點時,則△OPQ面積的最大值為30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知一扇形的周長為40,當扇形的面積最大時,扇形的圓心角等于( 。
A.2B.3C.1D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.正數(shù)a,b且滿足2a+8b=1,則$\frac{1}{a}$+$\frac{1}$的最小值為18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,在矩形ABCD中,AB=$\sqrt{3}$,BC=3,E在AC上,若BE⊥AC,則ED的長=$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-2ax+2a,g(x)=(2-a)x,其中a∈R.
(1)若f(x)為偶函數(shù),求a的值;
(2)求關于x的不等式f(x)>g(x)的解集;
(3)若f(x)-g(x)>-4對任意的x∈[3,6]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個口袋中裝有大小和形狀都相同的一個白球和一個黑球,那么“從中任意摸一個球得到白球”,這個事件是( 。
A.隨機事件B.必然事件C.不可能事件D.不能確定

查看答案和解析>>

同步練習冊答案