13.直線$y=x+\frac{1}{2}$與曲線x2-y|y|=1的交點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.3

分析 作出曲線x2-y|y|=1的圖形,畫出y=x+$\frac{1}{2}$的圖形,即可得出結(jié)論.

解答 解:當(dāng)y≥0時(shí),曲線方程為x2-y2=1,圖形為雙曲線在x軸的上側(cè)部分;
當(dāng)y<0時(shí),曲線方程為y2+x2=1,圖形為圓在x軸的下方部分;如圖所示,
∵y=x+$\frac{1}{2}$與y2+x2=1相交,漸近線方程為y=±x
∴直線y=x+$\frac{1}{2}$與曲線x2-y2=1的交點(diǎn)個(gè)數(shù)為0.
故選:B.

點(diǎn)評 本題考查直線與圓錐曲線的關(guān)系,題目中所給的曲線是部分雙曲線的橢圓組成的圖形,只要注意分類討論就可以得出結(jié)論,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+ax,a∈R
(1)討論函數(shù)f(x)在(0,+∞)上的單凋性;
(2)設(shè)函數(shù)g(x)=$\frac{1}{3}$x3+(a-1)x-alnx,問:在定義域內(nèi)是否存在三個(gè)不同的自變量xi(i=1,2,3),使得f(xi)-g(xi)的值相等?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在梯形PBCD中,A是PB的中點(diǎn),DC∥PB,DC⊥CB,且PB=2BC=2DC=4(如圖1所示),將三角形PAD沿AD翻折,使PB=2(如圖2所示),E是線段PD上的一點(diǎn),且PE=2DE.
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)在線段AB上是否存在一點(diǎn)F,使AE∥平面PCF?若存在,請指出點(diǎn)F的位置并證明,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f′(x)=3x2-6x,且f(0)=4,解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個(gè)幾何體的三視圖如圖所示,俯視圖為等邊三角形,若其側(cè)面積為12$\sqrt{3}$,則a是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=ax3+3x2+3x(a<0)在區(qū)間(1,2)是增函數(shù),則a的取值范圍是[-$\frac{5}{4}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.1B.21+$\sqrt{3}$C.3$\sqrt{3}$+12D.$\frac{3\sqrt{3}}{2}$+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=4.
(1)求證:CE∥平面PAB;
(2)若F為PC的中點(diǎn),求AF與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=2,那么$\overrightarrow$•(2$\overrightarrow{a}$-$\overrightarrow$)的值為( 。
A.-8B.-6C.0D.4

查看答案和解析>>

同步練習(xí)冊答案