A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
分析 根據(jù)對數(shù)函數(shù)單調(diào)性和函數(shù)單調(diào)性的運算法則,可得f(x)=lnx+x3-3在(0,+∞)上是增函數(shù),再通過計算f(1)、f(2)的值,發(fā)現(xiàn)f(1)•f(2)<0,即可得到零點所在區(qū)間.
解答 解:∵f(x)=lnx+x3-3在(0,+∞)上是增函數(shù)
f(1)=-2<0,f(2)=ln2+5>0
∴f(1)•f(2)<0,根據(jù)零點存在性定理,可得函數(shù)f(x)=lnx+x3-3的零點所在區(qū)間為(1,2)
故選:B.
點評 本題給出含有對數(shù)的函數(shù),求它的零點所在的區(qū)間,著重考查了基本初等函數(shù)的單調(diào)性和函數(shù)零點存在性定理等知識,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0,1} | B. | {-1,0,1} | C. | {0,1} | D. | {-1,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{{2-\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com