15.點(diǎn)P(m,1)不在不等式x+y-2<0表示的平面區(qū)域內(nèi),則實(shí)數(shù)m的取值范圍是( 。
A.m<1B.m≤1C.m≥1D.m>1

分析 根據(jù)題意,吧點(diǎn)P的坐標(biāo)代人不等式x+y-2<0,不等式不成立,由此求出m的取值范圍.

解答 解:點(diǎn)P(m,1)不在不等式x+y-2<0表示的平面區(qū)域內(nèi),
則m+1-2≥0,
解得m≥1.
故選:C.

點(diǎn)評(píng) 本題考查了二元一次不等式表示平面區(qū)域的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.3<m<5是方程$\frac{{x}^{2}}{m-5}$+$\frac{{y}^{2}}{{m}^{2}-m-6}$=1表示的圖形為雙曲線的( 。
A.充分但非必要條件B.必要但非充分條件
C.充分必要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2sin2x+sin2x-1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)$f({\frac{x_0}{2}})=cos({\frac{π}{6}+α})cos({\frac{π}{6}-α})+{sin^2}α$,求sin2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.為了得到y(tǒng)=x2-2x+3的圖象,只需將y=x2的圖象( 。
A.向右平移1個(gè)單位,再向下平移2個(gè)單位
B.向右平移1個(gè)單位,再向上平移2個(gè)單位
C.向左平移1個(gè)單位,再向上平移2個(gè)單位
D.向左平移1個(gè)單位,再向下平移2個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,若2ccos(C-$\frac{π}{2}$)=asin(π-A)-bcos($\frac{π}{2}$+B),則圓M:x2+y2=4被直線l:ax-by+c=0所截得的弦長(zhǎng)為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)0<a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B,求集合D(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若x+y=2,則2x+2y的最小值是( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x)=$\frac{1}{2}$x2+$\frac{x}$+c(b,c為常數(shù))和g(x)=$\frac{1}{4}$x+$\frac{1}{x}$是定義在M={x|1≤x≤4}上的函數(shù),對(duì)任意的x∈M,存在x0∈M使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則f(x)在集合M上的最大值為(  )
A.$\frac{7}{2}$B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.$函數(shù)f(x)=cos(x-\frac{π}{6})的圖象的一條對(duì)稱軸為$( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.π

查看答案和解析>>

同步練習(xí)冊(cè)答案