8.如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A、D分別是BF、CE上的點(diǎn),AD∥BC,且AB=DE=2BC=2AF(如圖1).將四邊形ADEF沿AD折起,連結(jié)BE、BF、CE(如圖2).在折起的過程中,下列說法中錯(cuò)誤的是( 。
A.AC∥平面BEFB.B、C、E、F四點(diǎn)不可能共面
C.若EF⊥CF,則平面ADEF⊥平面ABCDD.平面BCE與平面BEF可能垂直

分析 本題考查了折疊得到的空間線面關(guān)系的判斷;用到了線面平行、面面垂直的判定定理和性質(zhì)定理.

解答 解:在圖2中取AC的中點(diǎn)為O,取BE的中點(diǎn)為M,連結(jié)MO,易證得四邊形AOMF為平行四邊形,即AC∥FM,∴AC∥平面BEF,故A正確;
∵直線BF與CE為異面直線,∴B、C、E、F四點(diǎn)不可能共面,故B正確;
在梯形ADEF中,易得EF⊥FD,又EF⊥CF,∴EF⊥平面CDF,即有CD⊥EF,∴CD⊥平面ADEF,則平面ADEF⊥平面ABCD,故C正確;
延長AF至G使得AF=FG,連結(jié)BG、EG,易得平面BCE⊥平面ABF,過F作FN⊥BG于N,則FN⊥平面BCE.若平面BCE⊥平面BEF,則過F作直線與平面BCE垂直,其垂足在BE上,矛盾,故D錯(cuò)誤.
故選:D

點(diǎn)評(píng) 本題考查了線面平行、面面垂直的判定定理和性質(zhì)定理的運(yùn)用.考查了學(xué)生的空間想象能力和推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)成為M函數(shù):①對(duì)任意的x∈[0,1]恒有f(x)≥0;②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立,則下列函數(shù)不是M函數(shù)的是( 。
A.f(x)=x2B.f(x)=2x-1C.f(x)=ln(x2+1)D.f(x)=x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡求值:sin61°+sin62°+sin63°+…+sin689°+sin690°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求曲線y=6-x和y=$\sqrt{8x}$,y=0圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)是R上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列{an}是等差數(shù)列,a11>0,則f(a9)+f(a11)+f(a13)的值(  )
A.恒為正數(shù)B.恒為負(fù)數(shù)C.恒為0D.可正可負(fù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)a>0,函數(shù)f(x)=$\frac{e^x}{{{x^2}+a}}$.
(1)若a=$\frac{5}{9}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x=$\frac{1}{2}$時(shí),函數(shù)f(x)取得極值,證明:對(duì)于任意的${x_1},{x_2}∈[\frac{1}{2},\frac{3}{2}]$,|f(x1)-f(x2)|≤$\frac{3-e}{3}\sqrt{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn且Sn+1=$\frac{3}{2}$Sn+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Tn,求滿足不等式Tn<$\frac{12}{{S}_{n}+2}$的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等差數(shù)列{an}中,已知前9項(xiàng)之和為27,則a2+a4+a6+a8等于( 。
A.16B.12C.20D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x>0,y>0,x+y=1,則$\frac{1}{x+1}$+$\frac{1}{y+2}$的最小值為1.

查看答案和解析>>

同步練習(xí)冊答案