9.如圖,四邊形ABCD是正方形,PA⊥平面ABCD,PA=AB
(1)求證:PC⊥BD;
(2)求PC與平面ABCD所成角的余弦值.

分析 (1)連結(jié)AC,通過證明BD⊥平面PAC得出BD⊥PC;
(2)∠PCA為所求的線面角,設(shè)AB=PA=a,利用勾股定理計算出AC,PC即可解出.

解答 證明:(1)連結(jié)AC.
∵四邊形ABCD是正方形,
∴BD⊥AC.
∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD.
又PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴BD⊥平面PAC,∵PC?平面PAC,
∴BD⊥PC.
(2)∵PA⊥平面ABCD,
∴∠PCA為直線PC與平面ABCD所成的角,
設(shè)PA=AB=a,
∵四邊形ABCD是正方形,∴AC=$\sqrt{2}$AB=$\sqrt{2}a$.
∴PC=$\sqrt{P{A}^{2}+A{C}^{2}}$=$\sqrt{3}a$,
∴cos∠PCA=$\frac{AC}{PC}$=$\frac{\sqrt{2}a}{\sqrt{3}a}=\frac{\sqrt{6}}{3}$.

點評 本題考查了線面垂直的判定與性質(zhì),線面角的計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等比數(shù)列{an}中,已知a2=4,a6=6,則a10=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下列命題:
①曲線的切線一定和曲線只有一個交點;
②“可導(dǎo)函數(shù)y=f(x)在一點的導(dǎo)數(shù)值為0”是“函數(shù)y=f(x)在這點取得極值”的必要不充分條件;
③若f(x)在(a,b)內(nèi)存在導(dǎo)數(shù),則“f′(x)<0”是f(x)在(a,b)內(nèi)單調(diào)遞減的充要條件;
④求曲邊梯形的面積用到了“以直代曲”的思想,在“近似代替”中,函數(shù)f(x)在區(qū)間[xi,xi+1]上的近似值可以是該區(qū)間內(nèi)任一點的函數(shù)值f(ξi)(ξi∈[xi,xi+1])
其中正確的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x|x+1|,x∈[-2,2].
(1)畫出函數(shù)y=f(x)的圖象;
(2)求f(x)的值域;
(3)試根據(jù)圖象關(guān)系,解不等式f(x)≥-$\frac{1}{2}$(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)的定義域為R,且f′(x)+f(x)=2xe-x,若f(0)=1,則函數(shù)$\frac{f′(x)}{f(x)}$的取值范圍為( 。
A.[-2,0]B.[-1,0]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}中,a1+a12=12,則S12=( 。
A.24B.36C.72D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點M(x0,y0)為橢圓C上一點,點F1、A1,A2分別是橢圓C的左焦點、左頂點,右頂點.滿足過M與左、右兩頂點A1,A2的連線斜率的積為-$\frac{1}{2}$且|F1A1|=$\sqrt{2}$-1,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某高速成長的公司,連續(xù)4年年底的股利分配為每10股送4股,那么,股東張濤當(dāng)初的2000股在4年后變成了多少股?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)全集U={1,2,3,4},集合A={1,2},B={2,4},則∁U(A∪B)={3}.

查看答案和解析>>

同步練習(xí)冊答案