8.方程|x-1|+|y-1|=1確定的曲線所圍成的圖形面積為( 。
A.1B.2C.3D.4

分析 將方程|x-1|+|y-1|=1進(jìn)行化簡(jiǎn),作出表示的曲線所圍成的圖形即可得到結(jié)論.

解答 解:當(dāng)x≥1,y≥1時(shí),方程等價(jià)為x+y-3=0,
當(dāng)x≥1,y≤1時(shí),方程等價(jià)為x-y-1=0,
當(dāng)x≤1,y≥1時(shí),方程等價(jià)為x-y+1=0,
當(dāng)x≤1,y≤1時(shí),方程等價(jià)為x+y-1=0,
則對(duì)應(yīng)的圖象如圖:
則圍成的圖象為正方形,其中B(0,1),C(1,0),
則BC=$\sqrt{2}$,
則正方形的面積S=$\sqrt{2}×\sqrt{2}$=2,
故選:B.

點(diǎn)評(píng) 本題主要考查二元一次不等式組表示平面區(qū)域以及對(duì)應(yīng)圖象的面積的計(jì)算,根據(jù)條件將方程進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.與命題“若x∈A,則x∈B”等價(jià)的命題為若x∉A,則x∉B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足|AP|=|PM|,NP⊥MA,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在F,H之間),且滿足$\overrightarrow{FG}=λ\overrightarrow{FH}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知p:x2-4x-5>0,q:x2-2x+1-λ2>0,若p是q的充分不必要條件,則正實(shí)數(shù)λ的取值范圍是( 。
A.(0,1]B.(0,2)C.$({0,\frac{3}{2}}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)求二面角A-BD-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a>0,b>0.若$\sqrt{3}$是3a與32b的等比中項(xiàng),則$\frac{2}{a}$+$\frac{1}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),AC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的五棱錐,且$PB=\sqrt{10}$.
(1)求證:BD⊥平面POA;
(2)求二面角B-AP-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.巴西世界杯足球賽正在如火如荼進(jìn)行.某人為了了解我校學(xué)生“通過電視收看世界杯”是否與性別有關(guān),從全校學(xué)生中隨機(jī)抽取30名學(xué)生進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男生女生合計(jì)
收看10
不收看8
合計(jì)30
已知在這30名同學(xué)中隨機(jī)抽取1人,抽到“通過電視收看世界杯”的學(xué)生的概率是$\frac{8}{15}$.
(I)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并據(jù)此資料分析在犯錯(cuò)誤概率不超過0.01的前提下“通過電視收看世界杯”與性別是否有關(guān)?
(II)若從這30名同學(xué)中的男同學(xué)中隨機(jī)抽取2人參加一活動(dòng),記“通過電視收看世界杯”的人數(shù)為X,求X的分布列和均值.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(c+a)(b+d)}$,n=a+b+c+d)
P(K2>k0  0.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在三棱柱ABC-A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分別是B1C1,A1A的中點(diǎn).
(1)求證:A1D∥平面B1CE;
(2)設(shè)M是的中點(diǎn),N在棱AB上,且BN=1,P是棱AC上的動(dòng)點(diǎn),直線NP與平面MNC所成角為θ,試問:θ的正弦值存在最大值嗎?若存在,請(qǐng)求出$\frac{AP}{AC}$的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案