A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 本題是一個等可能事件的概率,試驗發(fā)生包含的事件數(shù)是36,滿足條件的事件是兩條直線的交點在第一象限,寫出兩條直線的交點坐標(biāo),根據(jù)在第一象限寫出不等式組,解出結(jié)果,根據(jù)a,b之間的關(guān)系寫出滿足條件的事件數(shù),得到結(jié)果.
解答 解:設(shè)事件A為“直線l1與l2的交點位于第一象限”,
由于直線l1與l2有交點,則b≠2a.
聯(lián)立方程組$\left\{\begin{array}{l}{ax-by+1=0}\\{x-2y-1=0}\end{array}\right.$
解得x=$\frac{b+2}{b-2a}$,y=$\frac{a+1}{b-2a}$,
∵直線l1與l2的交點位于第一象限,則x=$\frac{b+2}{b-2a}$>0,y=$\frac{a+1}{b-2a}$>0,
解得b>2a.a(chǎn),b∈{1,2,3,4,5,6}的總事件數(shù)為36種.
滿足條件的實數(shù)對(a,b)有(1,3)、(1,4)、(1,5)、(1,6)、(2,5)、(2,6)共六種.
∴P(A)=$\frac{6}{36}$=$\frac{1}{6}$
即直線l1與l2的交點位于第一象限的概率為$\frac{1}{6}$.
故選:A.
點評 本題考查等可能事件的概率,考查兩條直線的交點在第一象限的特點,本題是一個綜合題,在解題時注意解析幾何知識點的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | [0,+∞) | C. | (-$\frac{1}{3}$,+∞) | D. | (-∞,-$\frac{1}{2}$]∪[0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2018 | B. | -2019 | C. | 2019 | D. | 2018 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {2,3} | C. | (-3,1) | D. | (1,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com