【題目】已知四棱錐的底面ABCD為菱形,,側(cè)面PAD與底面ABCD所成的角為,是等邊三角形,點P到平面ABCD距離為.
(1)證明:;
(2)求二面角余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),把函數(shù)的圖象向右平移個單位,再把圖象上所有的點的橫坐標縮小到原來的一半(縱坐標不變),得到函數(shù)的圖象,則下列結(jié)論正確的是( )
A.的最小正周期為B.的圖象關(guān)于直線對稱
C.的一個零點為D.在上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】瑞士著名數(shù)學家歐拉在研究幾何時曾定義歐拉三角形,的三個歐拉點(頂點與垂心連線的中點)構(gòu)成的三角形稱為的歐拉三角形.如圖,是的歐拉三角形(H為的垂心).已知,,,若在內(nèi)部隨機選取一點,則此點取自陰影部分的概率為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點為,左右兩頂點,點為橢圓上任意一點,滿足直線的斜率之積為,且的最大值為4.
(1)求橢圓的標準方程;
(2)若直線與過點且與軸垂直的直線交于點,過點作,垂足分別為兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在區(qū)間內(nèi)沒有極值點.
(1)求實數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間的最大值為且最小值為,求的取值范圍.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
在平面直角坐標系xOy中,曲線C的參數(shù)方程為(a為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點,l和C交于A,B兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)求的單調(diào)區(qū)間和極值;
(2)若對于任意的,總存在,使得成立,求正實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com