【題目】某企業(yè)根據(jù)供銷合同生產(chǎn)某種型號零件10萬件,規(guī)定:零件長度(單位:毫米)在區(qū)間內(nèi),則為一等品;若長度在內(nèi),則為二等品;否則為不合格產(chǎn)品.現(xiàn)從生產(chǎn)出的零件中隨機抽取100件作樣本,其長度數(shù)據(jù)的頻率分布直方圖如圖所示.

(1)試估計該樣本的平均數(shù);

(2)根據(jù)合同,企業(yè)生產(chǎn)的每件一等品可獲利10元,每件二等品可獲利8元,每件不合格產(chǎn)品虧損6元,若用樣本估計總體,試估算該企業(yè)生產(chǎn)這批零件所獲得的利潤.

【答案】(1)100.68;(2)68萬元

【解析】分析:(1)由頻率分布直方圖結合平均數(shù)計算公式可估計該樣本的平均數(shù)為100.68.

(2)由題意知,一等品的頻率為0.38,二等品的頻率為0.48,不合格產(chǎn)品的頻率為0.14.據(jù)此可估計該企業(yè)生產(chǎn)這批零件所獲得的利潤為萬元.

詳解:(1)由頻率分布直方圖可得各組的頻率分別為0.02,0.18,0.38,0.30,0.10,0.02.

平均數(shù)估計值是.

(2)由題意知,一等品的頻率為0.38,二等品的頻率為0.48,不合格產(chǎn)品的頻率為0.14.

用樣本估計總體,一等品約有3.8萬件,二等品約有4.8萬件,不合格產(chǎn)品約有1.4萬件.

故該企業(yè)生產(chǎn)這批零件預計可獲利潤萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在框圖中,設x=2,并在輸入框中輸入n=4;ai=ii=0,1,23,4).則此程序執(zhí)行后輸出的S值為( )

A. 26 B. 49 C. 52 D. 98

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓中心在坐標原點,焦點在坐標軸上,且經(jīng)過三點.

(1)求橢圓的方程;

(2)在直線上任取一點,連接,分別與橢圓交于兩點,判斷直線是否過定點?若是,求出該定點.若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2+bx+c(a≠0),對任意實數(shù)t都有f(2+t)=f(2﹣t)成立,則函數(shù)值f(﹣1),f(1),f(2),f(5)中,最小的一個不可能是(
A.f(﹣1)
B.f(1)
C.f(2)
D.f(5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線與圓 且與橢圓相交于兩點.

(1)若直線恰好經(jīng)過橢圓的左頂點,求弦長

(2)設直線的斜率分別為,判斷是否為定值,并說明理由

(3)求,面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的ab的值.

(1)直線l1過點(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標原點到l1,l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C1的極坐標方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點P的極角為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點和短軸的兩個頂點構成的四邊形是一個正方形,且其周長為.

Ⅰ)求橢圓的方程;

Ⅱ)設過點的直線與橢圓相交于兩點,關于原點的對稱點為,若點總在以線段為直徑的圓內(nèi),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著節(jié)假日外出旅游人數(shù)增多,倡導文明旅游的同時,生活垃圾處理也面臨新的挑戰(zhàn),某海濱城市沿海有三個旅游景點,在岸邊兩地的中點處設有一個垃圾回收站點(如圖),兩地相距10,從回收站觀望地和地所成的視角為,且,設

(1)用分別表示,并求出的取值范圍;

(2)某一時刻太陽與三點在同一直線,此時地到直線的距離為,求的最大值.

查看答案和解析>>

同步練習冊答案