2.已知向量$\overrightarrow{a}$=(2,m)與向量$\overrightarrow$=(-1,-2)共線,則實(shí)數(shù)的值是4.

分析 利用向量共線定理即可得出.

解答 解:∵向量$\overrightarrow{a}$=(2,m)與向量$\overrightarrow$=(-1,-2)共線,
∴-m-2×(-2)=0,
解得m=4.
故答案為:4.

點(diǎn)評(píng) 本題考查了向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知方程x2-2ax+a2-4=0的一個(gè)實(shí)根在區(qū)間(-1,0)內(nèi),另一個(gè)實(shí)根大于2,則實(shí)數(shù)a的取值范圍是(  )
A.0<a<4B.1<a<2C.-2<a<2D.a<-3或a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若一個(gè)扇形的圓心角為$\frac{π}{3}$,所在圓的半徑為2,則這個(gè)扇形的面積為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax-2,}&{x≤1}\\{lo{g}_{a}x,}&{x>1}\end{array}\right.$在R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.0<a≤3B.a≥2C.2≤a≤3D.0<a≤2或a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.命題“?x0∈R,x${\;}_{0}^{2}$+2x0≥2”的否定為(  )
A.?x0∈R,${x}_{0}^{2}$+2x0≤2B.?x∈R,x2+2x≥2
C.?x0∈R,${x}_{0}^{2}$+2x0<2D.?x∈R,x2+2x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在拋物線y2=2px(p>0)中有如下結(jié)論:過(guò)焦點(diǎn)F的動(dòng)直線l交拋物線y2=2px(p>0)于A、B兩點(diǎn),則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=f(x)為定值,請(qǐng)把此結(jié)論類比到橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中有:過(guò)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦點(diǎn)F的直線交橢圓于A,B則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{2a}{b^2}$為定值;當(dāng)橢圓方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1時(shí),$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,$cosB=\frac{3}{5}$且$\overrightarrow{BA}•\overrightarrow{BC}=21$
(1)求△ABC的面積;
(2)若a=7,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=log2(x+1)與g(x)=2-x+1在同一直角坐標(biāo)系下的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,AB∥CD,∠DCB=90°,AB=AD=AA1=2DC,Q為棱CC1上一動(dòng)點(diǎn),過(guò)直線AQ的平面分別與棱BB1,DD1交于點(diǎn)P,R,則下列結(jié)論錯(cuò)誤的是( 。
A.對(duì)于任意的點(diǎn)Q,都有AP∥QR
B.對(duì)于任意的點(diǎn)Q,四邊形APQR不可能為平行四邊形
C.存在點(diǎn)Q,使得△ARP為等腰直角三角形
D.存在點(diǎn)Q,使得直線BC∥平面APQR

查看答案和解析>>

同步練習(xí)冊(cè)答案