12.如圖,在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,AB∥CD,∠DCB=90°,AB=AD=AA1=2DC,Q為棱CC1上一動點,過直線AQ的平面分別與棱BB1,DD1交于點P,R,則下列結(jié)論錯誤的是(  )
A.對于任意的點Q,都有AP∥QR
B.對于任意的點Q,四邊形APQR不可能為平行四邊形
C.存在點Q,使得△ARP為等腰直角三角形
D.存在點Q,使得直線BC∥平面APQR

分析 根據(jù)面面平行的性質(zhì)判斷A,B,使用假設(shè)法判斷C,D.

解答 解:(1)∵AB∥CD,AA1∥DD1,
∴平面ABB1A1∥平面CDD1C1,∵平面APQR∩平面ABB1A1=AP,平面APQR∩平面CDD1C1=RQ,
∴AP∥QR,故A正確.
(2)∵四邊形ABCD是直角梯形,AB∥CD,∴平面BCC1B1與平面ADD1A1不平行,
∵平面APQR∩平面BCC1B1=PQ,平面APQR∩平面ADD1A1=AR,
∴PQ與AR不平行,故四邊形APQR不可能為平行四邊形,故B正確.
(3)延長CD至M,使得DM=CM,則四邊形ABCM是矩形,∴BC∥AM.
當(dāng)R,Q,M三點共線時,AM?平面APQR,∴BC∥平面APQR,故D正確.
故選C.

點評 本題考查了直棱柱的結(jié)構(gòu)特征,面面平行的性質(zhì),線面平行的判定,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(2,m)與向量$\overrightarrow$=(-1,-2)共線,則實數(shù)的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知F是拋物線y2=4x的焦點,P1,P2,P3是該拋物線上的點,它們的橫坐標依次為x1,x2,x3,若x1,x2,x3成等比數(shù)列且log2x1+log2x2+log2x3=3,則|P2F|=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.△ABC中,已知點A(2,1),B(-2,3),C(0,1),則BC邊上的中線所在直線的一般式方程為x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中正確的個數(shù)為( 。
①線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱;
②殘差平方和越小的模型,模型擬合的效果越好;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是( 。
A.m∥n,m⊥α⇒n⊥αB.α∥β,m?α,n?β⇒m∥n
C.m?α,n?β,m∥n⇒α∥βD.m?α,n?α,m∥β,n∥β⇒α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標系中,已知A(1,0),B(3,2),則直線AB的傾斜角大。ā 。
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx(x∈R,a≠0),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案