6.給定k∈N+,設(shè)函數(shù)f:N+→N+滿足:對(duì)于任意大于k的正整數(shù)n,f(n)=n-k.設(shè)k=3,且當(dāng)n≤3時(shí),1≤f(n)≤3,則不同的函數(shù)f的個(gè)數(shù)是(  )
A.27B.16C.9D.1

分析 當(dāng)k=3時(shí),f(n)=n-3,然后根據(jù)2≤f(n)≤3,確定函數(shù)的個(gè)數(shù).

解答 解:∵n≤3,k=3,1≤f(n)≤3,
∴f(1)=1或2或3,且 f(2)=1或2或3 且 f(3)=1或2或3.
根據(jù)分步計(jì)數(shù)原理,可得共3×3×3=27個(gè)不同的函數(shù).
故選:A.

點(diǎn)評(píng) 本題主要考查映射的定義,以及分步計(jì)數(shù)原理的應(yīng)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,某市若規(guī)劃一居民小區(qū)ABCD,AD=2千米,AB=1千米,∠A=90°,政府決定從該地塊中劃出一個(gè)直角三角形地塊AEF建活動(dòng)休閑區(qū)(點(diǎn)E,F(xiàn)分別在線段AB,AD上),且該直角三角形AEF的周長為1千米,△AEF的面積為S.
(1)①設(shè)AE=x,求S關(guān)于x的函數(shù)關(guān)系式;
②設(shè)∠AEF=θ,求S關(guān)于θ的函數(shù)關(guān)系式;
(2)試確定點(diǎn)E的位置,使得直角三角形地塊AEF的面積S最大,并求出S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={x|0<$\frac{x-1}{3}$≤1},B={y|y=($\frac{1}{2}$)x,且x<-1}
(1)若集合C={x|x∈A∪B,且x∉A∩B},求集合C;
(2)設(shè)集合D={x|3-a<x<2a-1},滿足A∪D=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:填空題

等比數(shù)列滿足:,則___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an},a1=1,a2=2,an+1-3an+2an-1=0,(n∈N*,且n≥2),求an,并求出它的前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=3x2-6x-1.
(1)求不等式f(x)>8的解集;
(2)設(shè)g(x)=f(x)-4x2+mx-3,若任意x∈R,都有g(shù)(x)<0,求m的取值范圍;
(3)若對(duì)于任意的a∈[1,2],關(guān)于x的不等式f(x)≤x2-(2a+6)x+a+b+4在區(qū)間[1,3]的解集非空,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義兩個(gè)互相垂直的單位向量為“一對(duì)單位正交向量”,設(shè)平面向量a i(i=1,2,3,4)滿足條件:|ai|=1(i=1,2,3,4)且ai•ai+1=0(i=1,2,3),則(  )
A.a1+a2+a3+a4=0
B.|a1+a2+a3+a4|=2或2$\sqrt{2}$
C.ai(i=1,2,3,4)中任意兩個(gè)都是一對(duì)單位正交向量
D.a1,a4是一對(duì)單位正交向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|x2-2x-3≤0},B={x|m-2≤x≤m+2}.
(1)若A∪B=A,求實(shí)數(shù)m的取值范圍;
(2)若A∩B={x|0≤x≤3},求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,$\overrightarrow{BA}$•$\overrightarrow{BC}$<0,S△ABC=$\frac{15}{4}$,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=5,則∠BAC=$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案