分析 先求出函數(shù)的導數(shù),根據(jù)函數(shù)的單調性結合二次函數(shù)的性質求出a的范圍即可.
解答 解:f′(x)=$\frac{-{ax}^{2}+4x-a}{{(1{-x}^{2})}^{2}}$,
若f(x)在區(qū)間[$\frac{1}{3}$,$\frac{1}{2}$]上是單調函數(shù),
只需f′(x)>0或f′(x)<0[$\frac{1}{3}$,$\frac{1}{2}$]在區(qū)間[$\frac{1}{3}$,$\frac{1}{2}$]上恒成立即可,
a=0時,f′(x)>0在區(qū)間[$\frac{1}{3}$,$\frac{1}{2}$]上恒成立,
a≠0時,$\left\{\begin{array}{l}{-a>0}\\{\frac{2}{a}<0}\\{f′(\frac{1}{3})=-\frac{10}{9}a+\frac{4}{3}≥0}\end{array}\right.$或$\left\{\begin{array}{l}{-a<0}\\{△=\frac{2}{a}>0}\\{f′(\frac{1}{3})f′(\frac{1}{2})=(-\frac{10}{9}a+\frac{4}{3})(-\frac{5}{4}a+2)>0}\end{array}\right.$,
解得:a>$\frac{12}{5}$或a<$\frac{4}{5}$,
綜上,a∈(-∞,$\frac{4}{5}$)∪($\frac{12}{5}$,+∞).
點評 本題考查了函數(shù)的單調性問題,考查導數(shù)的應用,考查二次函數(shù)的性質,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{9}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com