3.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,2)則向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的投影為-$\frac{3\sqrt{2}}{2}$.

分析 求出兩向量夾角,代入投影公式即可.

解答 解:|$\overrightarrow$|=2$\sqrt{2}$,$\overrightarrow{a}•\overrightarrow$=-2-4=-6.∵cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$.
∴向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的投影|$\overrightarrow{a}$|cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{-6}{2\sqrt{2}}$=-$\frac{3\sqrt{2}}{2}$.
故答案為:-$\frac{3\sqrt{2}}{2}$.

點評 本題考查了平面向量的數(shù)量積運算,模長計算及投影的含義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow m=({\sqrt{3}cosx,-1}),\overrightarrow n=({sinx,{{cos}^2}x})$,函數(shù)$f(x)=\overrightarrow m•\overrightarrow n+\frac{1}{2}$.
(1)若$x∈[{0,\frac{π}{4}}],f(x)=\frac{{\sqrt{3}}}{3}$,求cos2x的值;
(2)在△ABC中,角A,B,C對邊分別是a,b,c,且滿足$2bcosA≤2c-\sqrt{3}a$,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列等式不正確的是(  )
A.${C}_{n}^{m}$=${C}_{n}^{n-m}$B.${C}_{n}^{m}$=$\frac{{A}_{n}^{m}}{n!}$
C.(n+2)(n+1)${A}_{n}^{m}$=${A}_{n+2}^{m+2}$D.${C}_{n}^{r}$=${C}_{n-1}^{r-1}$+${C}_{n-1}^{r}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線1的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)$+\sqrt{2}$=0,直線1與x,y軸分別交于點A,B,點P是曲線C上任意一點.
(1)求弦OP的中點M的軌跡的直角坐標(biāo)方程.
(2)求點P到直線AB距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.命題p:實數(shù)x滿足$\frac{x+m}{x+3m}$<0,其中m<0;命題q:實數(shù)x滿足x2-x-6<0或x2+2x-8<0,且¬p是¬q的必要不充分條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1-ax+{x}^{2}}{1-{x}^{2}}$在區(qū)間[$\frac{1}{3}$,$\frac{1}{2}$]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x),g(x)均是連續(xù)函數(shù),若${∫}_{1}^{2}$g(x)dx=3,${∫}_{0}^{2}$f(x)dx=1,${∫}_{0}^{1}$f(x)dx=-2,則${∫}_{1}^{2}$[f(x)+g(x)]dx=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若p,q是奇數(shù).則方程x2+px+q=0不可能有整數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.確定下列各三角函數(shù)值的正負號:
(1)sin170°;
(2)cos(-218°)

查看答案和解析>>

同步練習(xí)冊答案