14.函數(shù)y=3sinx-4cosx的最大值為5,最小值為-5.

分析 利用兩角和差的正弦公式把函數(shù)y的解析式化為5sin(x+∅),從而求得函數(shù)y的最值.

解答 解:y=3sinx-4cosx=5sin(x-φ),其中tanφ=$\frac{4}{3}$,
∴y=3sinx-4cosx的最大值為5,最小值為-5,
故答案為:5,-5.

點(diǎn)評 本題考查兩角和差的正弦公式,正弦函數(shù)的值域,把函數(shù)y的解析式化為5sin(x+∅),是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知P:(a-2)(a-3)=0,q:a=2,則P是q的( 。
A.充分必要條件B.必要不充分條件
C.充分不必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.用復(fù)合函數(shù)求導(dǎo)法則求下列函數(shù)在x=0處的導(dǎo)數(shù):
(1)f(x)=(2x-1)3
(2)g(x)=sin(5x+$\frac{π}{3}$);
(3)m(x)=e6x-4
(4)n(x)=$\frac{sin2x}{x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+a-2sin2x(a∈R,a為常數(shù)).
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的單凋遞減區(qū)間;
(3)若x∈[0,$\frac{π}{2}$],f(x)的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.有一個(gè)長度為5m的梯子貼靠在筆直的墻上,由于地面的細(xì)微傾斜(計(jì)算時(shí)忽略不計(jì)),其下端沿地板以3m/s的速度離開墻角滑動,當(dāng)其下端離開墻角3m時(shí),梯子上端下滑的速度為1m/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,若a1=25,S9=S17,則該數(shù)列的前( 。╉(xiàng)之和最大.
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線C的頂點(diǎn)是橢圓E:$\frac{x^2}{4}+\frac{y^2}{3}=1$的中心O,焦點(diǎn)與橢圓E的右焦點(diǎn)重合.過拋物線C的焦點(diǎn)的直線交拋物線于A,B兩點(diǎn),且$|AB|=\frac{5}{2}p$.
(1)求拋物線的方程;
(2)求直線AB所在的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不論k為何值,直線(2k-1)x-(k-2)y-(k+4)=0恒過的一個(gè)定點(diǎn)是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)$P(-\frac{3}{5},\frac{4}{5})$.
(Ⅰ)求sinα,cosα,tanα的值;
(Ⅱ)求$\frac{{2sin(π-α)-sin(\frac{π}{2}-α)}}{sin(2π-α)+cos(π+α)}$的值;
(Ⅲ)求$cos2α,tan(α+\frac{π}{4})$的值.

查看答案和解析>>

同步練習(xí)冊答案