4.下列有關(guān)線性回歸分析的四個命題:
①線性回歸直線必過樣本數(shù)據(jù)的中心點($\overline{x}$,$\overline{y}$);
②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;
③當(dāng)相關(guān)性系數(shù)r>0時,兩個變量正相關(guān);
④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)r就越接近于1.
其中真命題的個數(shù)為( 。
A.1個B.2個C.3個D.4個

分析 根據(jù)線性回歸方程的幾何特征及殘差,相關(guān)指數(shù)的概論,逐一分析四個答案的正誤,可得答案

解答 解:①線性回歸直線必過樣本數(shù)據(jù)的中心點($\overline{x}$,$\overline{y}$),故①正確;
②回歸直線在散點圖中可能不經(jīng)過任一樣本數(shù)據(jù)點,故②錯誤;
③當(dāng)相關(guān)性系數(shù)r>0時,則兩個變量正相關(guān),故③正確;
④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)r就越接近于1或-1,故④錯誤.
故真命題的個數(shù)為2個,
故選:B.

點評 本題以命題的真假判斷為載體,考查了相關(guān)關(guān)系,回歸分析,殘差,相關(guān)指數(shù)等知識點,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果直線4ax+y+2=0與直線(1-3a)x+ay-2=0平行,那么a等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知公差不為0的等差數(shù)列{an}前n項和為Sn,且S1,S2,S4成等比數(shù)列,則$\frac{{a}_{5}}{{a}_{1}}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.下表是數(shù)據(jù)x,y的記錄,其中y關(guān)于x的線性回歸方程是$\widehat{y}$=0.6x+0.3,那么表中t的值是1.
 3 5
 2.54.5 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為$\frac{π}{3}$,|$\overrightarrow{OA}$|=2,若點M在直線OB上,則|$\overrightarrow{OA}$$+\overrightarrow{OM}$|的最小值為( 。
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.隨著互聯(lián)網(wǎng)的發(fā)展,移動支付(又稱手機支付)越來越普遍,某學(xué)校興趣小組為了了解移動支付在大眾中的熟知度,對15~65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有n個人,把這n個人按照年齡分成5組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65),然后繪制成如圖所示的頻率分布直方圖,其中第一組的頻數(shù)為20.
(1)求n和x的值,并根據(jù)頻率分布直方圖估計 這組數(shù)據(jù)的眾數(shù),
(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù),
(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.平面幾何中有如下結(jié)論:若在三角形ABC的內(nèi)切圓的半徑為r1,外接圓的半徑為r2,則$\frac{{r}_{1}}{{r}_{2}}$=$\frac{1}{2}$.推廣到空間,可以得到類似結(jié)論;若正四面體P-ABC(所有棱長都相等的四面體叫正四面體)的內(nèi)切球半徑為R1,外接球半徑為R2,則$\frac{{R}_{1}}{{R}_{2}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(3,0),則|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知隨機變量ξ服從正態(tài)分布N(1,σ2),且P(ξ<2)=0.8,則P(1<ξ<2)0.3.

查看答案和解析>>

同步練習(xí)冊答案