分析 (1)求f(-x)=-f(x),從而說明f(x)為R上的奇函數(shù);
(2)根據(jù)增函數(shù)的定義,設(shè)任意的x1,x2∈R,且x1<x2,然后作差,通分,提取公因式,證明f(x1)<f(x2),便可得出f(x)在R上單調(diào)遞增;
(3)根據(jù)f(x)為奇函數(shù)且在R為增函數(shù),便可由f(x-k)+f(x2-k2)≥0恒成立得到x-k≥k2-x2恒成立,即x2+x-k2-k≥0恒成立,從而有△≤0,這樣即可得出k的值.
解答 解:(1)$f(-x)=\frac{{e}^{-x}-{e}^{x}}{2}=-f(x)$;
∴f(x)為奇函數(shù);
(2)證明:設(shè)x1<x2,則:$f({x}_{1})-f({x}_{2})=\frac{{e}^{{x}_{1}}-{e}^{-{x}_{1}}}{2}-\frac{{e}^{{x}_{2}}-{e}^{-{x}_{2}}}{2}$=$\frac{({e}^{{x}_{1}}-{e}^{{x}_{2}})(1+\frac{1}{{e}^{{x}_{1}+{x}_{2}}})}{2}$;
∵x1<x2;
∴${e}^{{x}_{1}}<{e}^{{x}_{2}}$,${e}^{{x}_{1}}-{e}^{{x}_{2}}<0$;
∴f(x1)<f(x2);
∴f(x)在R上是增函數(shù);
(3)∵f(x)為奇函數(shù),且在R上為增函數(shù);
∴由f(x-k)+f(x2-k2)≥0得,f(x-k)≥f(k2-x2);
∴x-k≥k2-x2;
∴x2+x-k2-k≥0在R上恒成立;
∴△=1+4(k2+k)≤0;
∴(2k+1)2≤0;
∴2k+1=0;
∴$k=-\frac{1}{2}$;
即存在實(shí)數(shù)k=$-\frac{1}{2}$,使f(x-k)+f(x2-k2)≥0恒成立.
點(diǎn)評(píng) 考查奇函數(shù)的定義,增函數(shù)的定義,以及根據(jù)增函數(shù)定義證明一個(gè)函數(shù)為增函數(shù)的方法和過程,作差的方法比較f(x1)與f(x2),作差后為分式的一般要通分,一般要提取公因式,指數(shù)函數(shù)的單調(diào)性,一元二次不等式恒成立時(shí)判別式△的取值情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | π | C. | π2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{ab}m$ | B. | $\frac{a+b}{2}m$ | C. | am | D. | bm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120° | B. | 30° | C. | 150° | D. | 60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com