4.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{π,x=0}\\{0,x<0}\end{array}\right.$,則f{f[f(-2)]}=(  )
A.0B.πC.π2D.4

分析 直接利用分段函數(shù)求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{π,x=0}\\{0,x<0}\end{array}\right.$,
則f(-2)=0,
f(f(-2))=f(0)=π.
f{f[f(-2)]}=f(π)=π2
故選:C.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若tan(θ+$\frac{π}{4}$)=-3,則$\frac{sin2θ}{1+cos2θ}$=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行下面的程序框圖,若p=0.95,則輸出的n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若曲線$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示橢圓,則k的取值范圍是$(-4,-\frac{3}{2})∪(-\frac{3}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)據(jù)5,7,7,8,10,11的方差是(  )
A.24B.10C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=lg(2x-3)的定義域是( 。
A.[$\frac{3}{2}$,+∞)B.($\frac{3}{2}$,+∞)C.(-∞,$\frac{3}{2}$]D.(-∞,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一個(gè)盒子中裝有標(biāo)號(hào)為1,2,3,4,5的5個(gè)球,同時(shí)選取兩個(gè)球,則兩個(gè)球上的數(shù)字為相鄰整數(shù)的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若正方形三條邊所在直線方程是:2x+y-1=0,2x+y+1=0,x-2y-1=0,則第四條邊直線所在方程是x-2y+1=0或x-2y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$(x∈R,e=2.71828…)
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明函數(shù)f(x)在R上是增函數(shù);
(3)是否存在實(shí)數(shù)k,使不等式f(x-k)+f(x2-k2)≥0對(duì)任意x∈R恒成立,若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案