18.在△ABC中,若B=$\frac{2π}{3}$,BC=5,AC=7,則△ABC的面積S=$\frac{15\sqrt{3}}{4}$.

分析 利用余弦定理列出關(guān)系式,將BC=5,AC=7及cosB的值代入求出AB的值,再由sinB的值,利用三角形面積公式即可求出三角形ABC面積.

解答 解:∵在△ABC中,B=$\frac{2π}{3}$,BC=5,AC=7,
∴AC2=BC2+AB2-2BC•ABcosb,即72=52+AB2-2×5AB×cos$\frac{2π}{3}$=25+AB2-10AB×(-$\frac{1}{2}$)=25+AB2+5AB,
整理,得
AB2+5AB-24=0.
解得AB=3(舍去負(fù)值).
則S=$\frac{1}{2}$BC•ABsin$\frac{2π}{3}$=$\frac{1}{2}$×5×3×$\frac{\sqrt{3}}{2}$=$\frac{15\sqrt{3}}{4}$.
故答案是:$\frac{15\sqrt{3}}{4}$.

點(diǎn)評(píng) 此題考查了正弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}滿足a1=1,an+an+1=2n+1,n∈N*,Sn是數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和,則下列結(jié)論:①S2n-1=(2n-1)•$\frac{1}{{a}_{n}}$;②S2n=$\frac{1}{2}$Sn;③S2n≥$\frac{3}{2}$-$\frac{1}{{2}^{n}}$+$\frac{1}{2}$Sn;④S2n≥Sn+$\frac{1}{2}$,其中正確的是③④(填寫所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知PA與半圓O切于點(diǎn)A,PO交半圓O于點(diǎn)B、C,AD⊥PO于點(diǎn)D.
(Ⅰ)求證AB平分∠PAD;
(Ⅱ)求證$\frac{PB}{PC}=\frac{DB}{DC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知點(diǎn)A(-1,1),B(-4,5),若$\overrightarrow{BC}=3\overrightarrow{BA}$,則點(diǎn)C的坐標(biāo)為( 。
A.(-10,13)B.(9,-12)C.(-5,7)D.(5,-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(cosx+$\sqrt{3}$sinx,sinx-$\sqrt{3}$cosx),x∈R,則<$\overrightarrow{a}$,$\overrightarrow$>的值是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.i為虛數(shù)單位,則$|{\frac{1+i}{i}}|$等于(  )
A.1-iB.1+iC.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,AB邊上的中線CO的長(zhǎng)為4,若動(dòng)點(diǎn)P滿足$\overrightarrow{AP}={sin^2}θ•\overrightarrow{AO}+{cos^2}θ•\overrightarrow{AC}$(θ∈R),則$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}$的最小值是( 。
A.-9B.-8C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若數(shù)列{an},{bn}的通項(xiàng)公式分別是${a_n}={(-1)^{n+2014}}a$,${b_n}=2+\frac{{{{(-1)}^{n+2015}}}}{n}$,且an<bn對(duì)任意n∈N*恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,$\frac{1}{2}$)B.[-2,$\frac{1}{2}$)C.[-2,$\frac{3}{2}$)D.[-1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a=($\frac{3}{4}$)${\;}^{-\frac{1}{3}}$,b=($\frac{4}{3}$)${\;}^{\frac{1}{4}}$,c=($\frac{3}{2}$)${\;}^{-\frac{3}{4}}$,則a,b,c的大小順序?yàn)椋ā 。?table class="qanwser">A.c<b<aB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

同步練習(xí)冊(cè)答案