3.設(shè)a=($\frac{3}{4}$)${\;}^{-\frac{1}{3}}$,b=($\frac{4}{3}$)${\;}^{\frac{1}{4}}$,c=($\frac{3}{2}$)${\;}^{-\frac{3}{4}}$,則a,b,c的大小順序?yàn)椋ā 。?table class="qanwser">A.c<b<aB.c<a<bC.b<c<aD.b<a<c

分析 利用指數(shù)函數(shù)的單調(diào)性和和函數(shù)值域1關(guān)系即可判斷.

解答 解:a=($\frac{3}{4}$)${\;}^{-\frac{1}{3}}$=$(\frac{4}{3})^{\frac{1}{3}}$,b=($\frac{4}{3}$)${\;}^{\frac{1}{4}}$,c=($\frac{3}{2}$)${\;}^{-\frac{3}{4}}$=$(\frac{2}{3})^{\frac{3}{4}}$<1,
由于指數(shù)函數(shù)y=$(\frac{4}{3})^{x}$為增函數(shù),$\frac{1}{3}$>$\frac{1}{4}$,
∴a>b>1,
∴a>b>c,
故選:A.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,若B=$\frac{2π}{3}$,BC=5,AC=7,則△ABC的面積S=$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=x2-4x+5-2lnx的零點(diǎn)個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),以該橢圓上的異于長(zhǎng)軸端點(diǎn)的點(diǎn)和橢圓的左,右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長(zhǎng)為8$\sqrt{2}$,以橢圓的四個(gè)頂點(diǎn)組成的菱形的面積為8$\sqrt{2}$,雙曲線G:x2-y2=m(m>0)的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A,B和C,D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)直線PF1,PF2的斜率分別為k1,k2,探求k1與k2的關(guān)系;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB||CD|恒成立?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|
(Ⅰ)若a=1,求f(x)單調(diào)遞增區(qū)間;
(Ⅱ)記g(x)=x2-2x-3,若存在x1,x1∈[0,4],使得f(x1)=g(x1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.化簡(jiǎn):
(1)(2a${\;}^{\frac{1}{4}}$b${\;}^{\frac{1}{3}}$)(-3a${\;}^{-\frac{1}{2}}$b${\;}^{\frac{2}{3}}$)÷(-$\frac{1}{4}$a${\;}^{-\frac{1}{4}}$b${\;}^{-\frac{2}{3}}$);
(2)log225•log3$\frac{1}{16}$•log5$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為了了解高一學(xué)生的體能情況,某校隨機(jī)抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫(huà)出了頻率直方圖如圖所示,已知次數(shù)在[100,110)間的頻數(shù)為7,次數(shù)在110以下(不含110)視為不達(dá)標(biāo),次數(shù)在[110,130)視為達(dá)標(biāo),次數(shù)在130以上視為有優(yōu)秀.
(1)求此次抽樣的樣本總數(shù)為多少人?
(2)在樣本中,隨機(jī)抽取一人調(diào)查,則抽中不達(dá)標(biāo)學(xué)生、達(dá)標(biāo)學(xué)生、優(yōu)秀學(xué)生的概率分別是多少?
(3)將抽樣的樣本頻率視為總體概率,若優(yōu)秀成績(jī)記為15,達(dá)標(biāo)成績(jī)記為10分,不達(dá)標(biāo)記為5分,現(xiàn)在從該校高一學(xué)生中隨機(jī)抽取2人,他們分值和記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在斜三棱柱 A BC-A1 B1C1中,側(cè)面 ACC1 A1與側(cè)面C B B1C1都是菱形,∠ACC1=∠CC1 B1=60°,AC=2,AB1=$\sqrt{6}$.
(Ⅰ)求證:平面ACC1A1⊥平面BCC1B1
(Ⅱ)求二面角C-A B1-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知直線l:3x+4y-3=0和圓C:x2+y2-6x-2y+1=0,則圓C上到直線l的距離等于1的點(diǎn)的個(gè)數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案