13.已知F1,F(xiàn)2分別為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點,過F2作雙曲線一條漸近線的垂線,垂足為M,且|MF1|=3|MF2|,則此雙曲線的離心率是$\frac{\sqrt{6}}{2}$.

分析 求出雙曲線的一條漸近線方程,運用點到直線的距離公式,求得|MF2|=b,運用余弦函數(shù)的定義和余弦定理,結(jié)合離心率公式,計算即可得到所求值.

解答 解:設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線方程為y=$\frac{a}$x,
F2(c,0)到漸近線的距離為d=|MF2|=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b,
cos∠MOF2=$\frac{|MO|}{|O{F}_{2}|}$=$\frac{\sqrt{{c}^{2}-^{2}}}{c}$=$\frac{a}{c}$,
在△MOF1中,|MF1|2=|MO|2+|OF1|2-2|MO|•|OF1|•cos∠MOF2
=a2+c2-2ac•(-$\frac{a}{c}$)=3a2+c2,
由|MF1|=3|MF2|,可得3a2+c2=9b2=9(c2-a2),
即有c2=$\frac{3}{2}$a2,即e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故答案為:$\frac{\sqrt{6}}{2}$.

點評 本題考查雙曲線的離心率的求法,注意運用雙曲線的漸近線方程和點到直線的距離公式,同時考查余弦定理的運用,化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若奇函數(shù)y=g(x)與f(x)=2sin(2x+φ)圖象關(guān)于直線x=$\frac{π}{6}$對稱,要得到y(tǒng)=g(x),則可用y=f(x)的圖象變換得到(|φ|<$\frac{π}{2}$),需經(jīng)過的變換是( 。
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{3}$個單位D.向右平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC,M為CC1的中點,∠ABC=90°,AC=A1A,∠A1AC=60°,AB=BC=2.
(Ⅰ)求證:BA1=BM;
(Ⅱ)求三棱錐C1-A1B1M的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{4}-\frac{y^2}{16}=1$,則該雙曲線的焦點坐標(biāo)為,(±$2\sqrt{5}$,0)漸近線方程為y=±2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C的焦點為F1,F(xiàn)2,點P是雙曲線上任意一點,若雙曲線的離心率為2,且|PF1|=2|PF2|,則cos∠PF2F1=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的右焦點F作一條漸近線的垂線,垂足為P,線段OP的垂直平分線交y軸于點Q(其中O為坐標(biāo)原點).若△OFP的面積是△OPQ的面積的4倍,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知某廠每天的固定成本是20000元,每天最大規(guī)模的產(chǎn)品量是350件.每生產(chǎn)一件產(chǎn)品,成本增加100元,生產(chǎn)x件產(chǎn)品的收入函數(shù)是R(x)=-$\frac{1}{2}$x2+400x,記L(x),P(x)分別為每天的生產(chǎn)x件產(chǎn)品的利潤和平均利潤 (平均利潤=$\frac{總利潤}{總產(chǎn)量}$).
(1)每天生產(chǎn)量x為多少時,利潤L(x)有最大值?;
(2)每天生產(chǎn)量x為多少時,平均利潤P(x)有最大值?若該廠每天生產(chǎn)的最大規(guī)模為180件,那么每天生產(chǎn)量x為多少時,平均利潤P(x)有最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$所表示的區(qū)域為D,M(x,y)是區(qū)域D內(nèi)的點,點A(-1,2),則z=$\overrightarrow{OA}$•$\overrightarrow{OM}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.由曲線x2+y2=2|x|+2|y|圍成的圖形的面積為8+4π.

查看答案和解析>>

同步練習(xí)冊答案