某縣電業(yè)局對農(nóng)村進行農(nóng)網(wǎng)改造后,其用電收費標(biāo)準(zhǔn)如下:每戶每月用電不超過60度時,每度為0.47元,當(dāng)用電超過60度時,超過部分每度0.52元,某月甲、乙兩用戶共交電費y元,已知甲、乙兩用戶該月用電量分別為2x,3x.
(1)寫出y關(guān)于x的函數(shù)解析式;
(2)若甲、乙兩用戶該月共交電費77.2元,分別求出甲、乙兩用戶該月的用電量.
考點:分段函數(shù)的應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)題意,分段求出函數(shù)的解析式,即可得出結(jié)論;
(2)由(1)知,2.6x-6=77.2,即可求出甲、乙兩用戶該月的用電量.
解答: 解:(1)x≤20時,y=0.47×5x=2.35x;
20<x<30時,y=0.47×(2x+60)+0.52×(3x-60)=2.5x-3;
x≥30時,y=0.47×120+0.52×(5x-120)=2.6x-6,
∴y=
2.35x,x≤20
2.5x-3,20<x<30
2.6x-6,x≥30

(2)由(1)知,2.6x-6=77.2,∴x=32,
∴甲、乙兩用戶該月的用電量分別為64度,96度.
點評:本題考查利用數(shù)學(xué)知識解決實際問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,C島位于我南海A港口北偏東60方向,距A港口60
2
海里處,我海監(jiān)船從A港口出發(fā),自西向東航行至B處時,接上級命令趕赴C島執(zhí)行任務(wù),此時C島在B處北偏西45°方向上,海監(jiān)船立刻改變航向以每小時60海里的速度沿BC行進,則從B處到達C島需要多少小時?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC是圓O的內(nèi)接三角形,PA是圓O的切線,PB交AC于點E,交圓O于點D,已知PE=PA,∠ABC=60°,PD=1,BD=8.
(1)求證:∠AEP=60°;
(2)求BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點C、M在以AB為直徑的⊙O上,OM∥AC,PA垂直于⊙O所在平面,∠CBA=30°,PA=AB=2,
(1)求證:平面PAC⊥平面PCB;
(2)設(shè)二面角M-BP-C的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=x+
2
x
,x∈(-∞,0)∪(0,+∞)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c分別是角A,B,C的對邊,且acosA=bcosB.
(1)若a=5,b=12,求|
CA
-
CB
|;
(2)a=c=4,求
AB
AC
+
BA
BC
+
CA
CB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是拋物線x2=4y上一個動點,過點P作圓x2+(y-4)2=1的兩條切線,切點分別為M,N,則線段MN長度的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為1,P、Q分別是線段AD1和BD上的點,且D1P:PA=DQ:QB=5:12,
(1)求線段PQ的長度;
(2)求證PQ⊥AD;
(3)求證:PQ∥平面CDD1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰Rt△ACB,AB=2,∠ACB=
π
2
.以直線AC為軸旋轉(zhuǎn)一周得到一個圓錐,D為圓錐底面一點,BD⊥CD,CH⊥AD于點H,M為AB中點,則當(dāng)三棱錐C-HAM的體積最大時,CD的長為
 

查看答案和解析>>

同步練習(xí)冊答案