8.下列命題中正確的是( 。
A.有兩個(gè)面平行,其余各面都是四邊形的幾何體叫棱柱
B.有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱
C.有一個(gè)面是多邊形,其余各面都是梯形的幾何體叫棱臺(tái)
D.有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形的幾何體叫棱錐

分析 根據(jù)棱柱的幾何特征,有兩個(gè)面平行,其余各面是相鄰的公共邊都相互平行的平行四邊形的幾何體叫棱柱,由此可判斷AB的真假;根據(jù)棱臺(tái)的幾何特征:拿一個(gè)平行于底面的平面截棱錐,底面與截面之間的部分叫棱臺(tái),可C的真假.根據(jù)棱錐的幾何特征:有一個(gè)面是多邊形,其余各面都是有公共頂點(diǎn)三角形的幾何體叫棱錐,可判斷D的真假;

解答 解:有兩個(gè)面平行,其余各面是相鄰的公共邊都相互平行的平行四邊形的幾何體叫棱柱
故A,B錯(cuò)誤;
拿一個(gè)平行于底面的平面截棱錐,底面與截面之間的部分叫棱臺(tái),
故C錯(cuò)誤;
有一個(gè)面是多邊形,其余各面都是有公共頂點(diǎn)三角形的幾何體叫棱錐,即D正確;
故選D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的幾何特征,棱錐的幾何特征,棱臺(tái)的幾何特征,熟練掌握相關(guān)定義是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|2<x<4},B={x|a<x<3a}.
(1)若A∩B=∅,求a的取值范圍;
(2)若A∩B={x|3<x<4},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.當(dāng)0≤m≤1時(shí),(2x-1)<m(x2-1)恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用適當(dāng)?shù)姆椒ū硎鞠铝屑希?br />(1)到兩定點(diǎn)距離的和等于兩定點(diǎn)間距離的點(diǎn)的集合;
(2)所有直角三角形組成的集合;
(3)滿足3x-2>x+3的全體實(shí)數(shù)組成的集合;
(4)所有絕對(duì)值小于4的正數(shù)的集合;
(5)平方后仍等于原數(shù)的數(shù)集;
(6)方程4x2+9y2-4x+12y+5=0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列給出的四個(gè)命題中:
①若等差數(shù)列{an}的公差d>0,則數(shù)列{$\frac{{a}_{n}}{n}$}是遞增數(shù)列;
②“m=-2“是”直線(m+2)x+my+1=0與(m-2)x+(m+2)y-3=0相互垂直“的充分不必要條件;
③已知0<θ<$\frac{π}{4}$,則雙曲線C1:$\frac{{x}^{2}}{co{s}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θ}$=1與C2:$\frac{{x}^{2}}{si{n}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θta{n}^{2}θ}$=1的焦距相等;
④在實(shí)數(shù)數(shù)列{an}中,a1=0,|a2|=|a1-1|,|a3|=|a2-1|,…|an|=|an-1-1|,則a1+a2+a3+a4的最大值為2.
其中為真命題的是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{a}{x}$+lnx,其中a為實(shí)常數(shù).
(Ⅰ)若a=2,求函數(shù)f(x)的值域;
(Ⅱ)設(shè)命題p:?x∈[1,+∞),f(x)<x2,若p為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)$\overrightarrow{a}$是已知的平面向量且$\overrightarrow{a}$≠0.關(guān)于向量$\overrightarrow{a}$的分解,有如下四個(gè)命題:
①給定向量$\overrightarrow$,總存在向量$\overrightarrow{c}$,使$\overrightarrow{a}$=$\overrightarrow$+$\overrightarrow{c}$;
②給定向量$\overrightarrow$和$\overrightarrow{c}$,總存在實(shí)數(shù)λ和μ,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$;
③給定單位向量$\overrightarrow$和正數(shù)μ,總存在單位向量$\overrightarrow{c}$和實(shí)數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$;
④給定正數(shù)λ和μ,總存在單位向量$\overrightarrow$和單位向量$\overrightarrow{c}$,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$.
上述命題中的向量$\overrightarrow$,$\overrightarrow{c}$和$\overrightarrow{a}$在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列命題中正確的有②③.
①若$\overrightarrow a,\overrightarrow b,\overrightarrow c$是空間三個(gè)非零向量,且滿足$\overrightarrow a•\overrightarrow b=\overrightarrow c•\overrightarrow b$,則$\overrightarrow a=\overrightarrow c$;
②回歸直線一定過樣本中心($\overline{x}$,$\overline{y}$).
③若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變;
④用相關(guān)指數(shù)R2來刻畫回歸效果,R2越接近0,說明模型的擬合效果越好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給出以下結(jié)論,其中錯(cuò)誤的有③④
①正方形的直觀圖可能為平行四邊形
②在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,則△ABC為鈍角三角形
③已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,則an=2n(n∈N*
④若關(guān)于x的不等式x2-2ax+1≤0有解,則a的取值范圍為(-∞,-1)∪(1,+∞)
⑤函數(shù)y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$ (x∈R)的最小值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案