分析 根據(jù)拋物線的方程求出拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo),結(jié)合直角三角形的性質(zhì)建立方程關(guān)系進(jìn)行求解即可.
解答 解:由拋物線的標(biāo)準(zhǔn)方程得拋物線的準(zhǔn)線為x=-1,拋物線的焦點(diǎn)F(1,0),
將x=-1代入雙曲線方程得4-$\frac{y^2}{b^2}$=1,即$\frac{y^2}{b^2}$=3,則y=±$\sqrt{3}$b,
設(shè)A(-1,$\sqrt{3}$b),B(-1,-$\sqrt{3}$b),
∵△FAB為直角三角形,
∴tan45°=$\frac{\sqrt{3}b}{2}$=1,則b=$\frac{2}{\sqrt{3}}$,
則雙曲線的方程為4x2-$\frac{{y}^{2}}{\frac{4}{3}}$=1,
即$\frac{{x}^{2}}{\frac{1}{4}}$-$\frac{{y}^{2}}{\frac{4}{3}}$=1,則a=$\frac{1}{2}$,
c=$\sqrt{\frac{1}{4}+\frac{4}{3}}$=$\frac{\sqrt{57}}{6}$,
則雙曲線的離心率e=$\frac{c}{a}$=$\frac{\frac{\sqrt{57}}{6}}{\frac{1}{2}}$=$\frac{{\sqrt{57}}}{3}$,
故答案為:$\frac{{\sqrt{57}}}{3}$
點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)拋物線和雙曲線的性質(zhì)建立方程是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分?jǐn)?shù)段 | [0,7) | [7,8) | [8,9) | [9,10) |
新生兒數(shù) | 1 | 3 | 8 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com