分析 利用同角三角函數(shù)關系式求出sinα和cosα,再由${cos^2}α+cos({\frac{π}{2}+2α})$=$\frac{9}{10}-2sinαcosα$,能求出結果.
解答 解:∵tanα=$\frac{1}{3}$,∴sinα=$\frac{1}{\sqrt{10}}$,cos$α=\frac{3}{\sqrt{10}}$,或$sinα=-\frac{1}{\sqrt{10}}$,cos$α=-\frac{3}{\sqrt{10}}$,
∴${cos^2}α+cos({\frac{π}{2}+2α})$=$\frac{9}{10}$-sin2α
=$\frac{9}{10}-2sinαcosα$
=$\frac{9}{10}-2×\frac{1}{\sqrt{10}}×\frac{3}{\sqrt{10}}$
=$\frac{3}{10}$.
故答案為:$\frac{3}{10}$.
點評 本題考查三角函數(shù)化簡求值,是中檔題,解題時要認真審題,注意同角三角函數(shù)關系式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2$\sqrt{2}$,$\frac{11}{3}$) | B. | (2$\sqrt{2}$,$\frac{11}{3}$] | C. | (2$\sqrt{3}$,4) | D. | (2$\sqrt{3}$,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\sqrt{2}$] | B. | (0,$\sqrt{2}$] | C. | (1,$\sqrt{2}$) | D. | (0,$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 22 | B. | 25 | C. | 28 | D. | 31 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{4}{9}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 75 | B. | 90 | C. | 105 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com