11.長方體的三條棱長為3,4,5且它的八個頂點都在同一個球面上,求該球的表面積.

分析 通過題意可得$\frac{\sqrt{{3}^{2}+{4}^{2}+{5}^{2}}}{2}$即為球的半徑,利用球的表面積公式計算即可.

解答 解:根據(jù)題意可得該球的半徑r=$\frac{\sqrt{{3}^{2}+{4}^{2}+{5}^{2}}}{2}$=$\frac{5\sqrt{2}}{2}$,
∴該球的表面積為:4πr2=4π•$(\frac{5\sqrt{2}}{2})^{2}$=50π.

點評 本題考查求球的表面積,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-4|x|+3.
(1)試證明函數(shù)f(x)是偶函數(shù);
(2)畫出f(x)的圖象;(要求先用鉛筆畫出草圖,再用中性筆描。
(3)請根據(jù)圖象指出函數(shù)f(x)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間;(不必證明)
(4)當實數(shù)k取不同的值時,討論關(guān)于x的方程x2-4|x|+3=k的實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f1(x)=x2,f2(x)=2(x-x2),ai=$\frac{i}{99}$,i=0,1,2,…,99,記Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,則下列結(jié)論正確的是( 。
A.S1=1<S2B.S1=1>S2C.S1>1>S2D.S1<1<S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線l1:ρsin(θ+α)=a和l2:θ=$\frac{π}{2}$-α的位置關(guān)系是( 。
A.l1∥l2B.l1⊥l2C.l1和l2重合D.l1,l2斜交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(0,$\sqrt{2}$),離心率為$\frac{\sqrt{3}}{3}$,過橢圓的右邊焦點F作互相垂直的兩條直線分別交橢圓于A、B和C、D,且M、N分別為AB、CD的中點.
(1)求橢圓的方程;
(2)證明:直線MN過定點,并求出這個定點;
(3)當AB、CD的斜率存在時,求△FMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),A(2,0)是長軸的一個端點,弦BC過橢圓的中心O,且$\overrightarrow{AC}$$•\overrightarrow{BC}$=0,|$\overrightarrow{OC}-\overrightarrow{OB}|$=2|$\overrightarrow{BC}-\overrightarrow{BA}$|.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)P、Q為橢圓上異于A,B且不重合的兩點,且∠PCQ的平分線總是垂直于x軸,是否存在實數(shù)λ,使得$\overrightarrow{PQ}$=λ$\overrightarrow{AB}$,若存在,請求出λ的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知中心在原點,焦點在坐標軸上的橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),離心率為$\frac{1}{2}$,
(1)求橢圓E的方程;
(2)設(shè)直線l過橢圓E的右焦點F,且交橢圓E于A、B兩點,是否存在實數(shù)λ,使得|AF|+|BF|=λ|AF|•|BF|恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知k是整數(shù),∠A、∠B、∠C為鈍角△ABC的三個內(nèi)角,且其對邊分別為a、b、c.
(1)若方程x2-2kx+3k2-7k+3=0有實根,求k的值;
(2)對于(1)中的k的值,若sinC=$\frac{k}{\sqrt{2}}$,且有關(guān)系式(c-b)sin2A+bsin2B=csin2C,試求∠A、∠B、∠C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.7位同學(xué)合照,下列各種情況下分別有多少種不同的照片?
(1)站成一排;
(2)站成兩排,前排3人,后排4人;
(3)甲必須站在中間;
(4)甲乙兩人之間正好間隔兩人.

查看答案和解析>>

同步練習(xí)冊答案