14.已知平面α,β,直線m,n,下列命題中不正確的是( 。
A.若m⊥α,m⊥β,則α∥βB.若m∥n,m⊥α,則n⊥α
C.若m⊥α,m?β,則α⊥βD.若m∥α,α∩β=n,則m∥n

分析 利用在與平面,直線與直線的平行與垂直的判定定理以及性質(zhì)定理推出結(jié)果即可.

解答 解:若m⊥α,m⊥β,則α∥β,滿足平面與平面平行的判定定理,所以A正確;
若m∥n,m⊥α,則n⊥α,滿足滿足直線與平面平行的性質(zhì),所以B正確;
若m⊥α,m?β,則α⊥β,滿足平面與平面垂直的性質(zhì),所以C正確;
若m∥α,α∩β=n,則m∥n,也可能得到m,n是異面直線,所以D不正確.
故選:D.

點(diǎn)評(píng) 本題考查直線與直線,直線與平面,平面與平面平行與垂直的判斷與性質(zhì),考查基本知識(shí)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:$\sqrt{2}$sin($\frac{π}{4}$-x)+$\sqrt{6}$cos($\frac{π}{4}$-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若復(fù)數(shù)z滿足3z+$\overline z$=1+i,其中i是虛數(shù)單位,則z=$\frac{1}{4}+\frac{1}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.把一個(gè)底面邊長和高都為6的正三棱錐(底面是正三角形,從頂點(diǎn)向底面作垂線,垂足是底面的中心的三棱錐)P-ABC的底面ABC放置在平面α上,現(xiàn)讓三棱錐繞棱BC逆時(shí)針方向旋轉(zhuǎn),使側(cè)面PBC落在α內(nèi),則在旋轉(zhuǎn)過程中正三棱錐P-ABC在α上的正投影圖的面積取值范圍是(  )
A.[$\frac{54\sqrt{13}}{13}$,12$\sqrt{3}$]B.[$\frac{54\sqrt{13}}{13}$,9$\sqrt{3}$]C.[$\frac{48\sqrt{13}}{13}$,12$\sqrt{3}$]D.[$\frac{48\sqrt{13}}{13}$,3$\sqrt{39}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在校英語節(jié)演講比賽中,七位評(píng)委老師為某班選手打出的分?jǐn)?shù)的莖葉圖(如圖所示),去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax3+bx2+cx+d為奇函數(shù),且在x=-1處取得極大值2.
(1)求f(x)的解析式.
(2)若f(x)+(m+2)x≤x2(ex-1)對(duì)于任意的x∈[0,+∞)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=sinx.
(1)令f1(x)=f′(x),fn+1(x)=fn′(x),(n∈N*),f2015(x)的解析式;
(2)若f(x)+1≥ax+cosx在[0,π]上恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:f($\frac{π}{2n+1}$)+f($\frac{2π}{2n+1}$)+…+f($\frac{(n+1)π}{2n+1}$)≥$\frac{{3\sqrt{2}(n+1)}}{4(2n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,AF⊥BF,O為AB的中點(diǎn),矩形ABCD所在平面與平面ABEF互相垂直.
(1)求證:AF⊥平面CBF;
(2)在棱FC上是否存在M,使得OM∥平面DAF?
(3)求點(diǎn)A到平面BDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}滿足a1=b1=1,S3=b3+2,S5=b5-1.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)如果數(shù)列{bn}為遞增數(shù)列,求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案