13.將編號(hào)為1,2,3,4的四個(gè)小球放入3個(gè)不同的盒子中,每個(gè)盒子里至少放1個(gè),則恰有1個(gè)盒子放有2個(gè)連號(hào)小球的所有不同放法有18種.(用數(shù)字作答)

分析 先把4個(gè)小球分為(2,1,1)一組,其中2個(gè)連號(hào)小球的種類有(1,2),(2,3),(3,4)為一組,再全排列即可,

解答 解:先把4個(gè)小球分為(2,1,1)一組,其中2個(gè)連號(hào)小球的種類有(1,2),(2,3),(3,4)為一組,分組后分配到三個(gè)不同的盒子里,共有C31A33=18種,
故答案為:18.

點(diǎn)評(píng) 本題考查了分步計(jì)數(shù)原理,關(guān)鍵是分組分配,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知定圓A:(x+$\sqrt{3}$)2+y2=16動(dòng)圓M過點(diǎn)B($\sqrt{3}$,0),且和定圓A相切,動(dòng)圓的圓心M的軌跡記為C,則曲線C的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)g(x)=2cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變)后得到h(x)的圖象,設(shè)f(x)=$\frac{1}{4}$x2+h(x),則f′(x)的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=1-$\frac{1}{x+1}$,則f(2)+f(3)+…f(10)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…f($\frac{1}{10}$)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,已知b=asinC+ccosA
(1)求A+B的值;
(2)若c=$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=(x+1)ex在點(diǎn)(0,1)處的切線方程為( 。
A.2x-y-1=0B.2x-y+1=0C.x-2y-1=0D.x-2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知α是銳角,$sinα=\frac{3}{5},則tanα$=( 。
A.$\frac{4}{5}$B.$\frac{3}{4}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b,c是正實(shí)數(shù),則“b≤$\sqrt{ac}$”是“a+c≥2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.方程$\left\{\begin{array}{l}{x=1+sinθ}\\{y=sin2θ}\end{array}\right.$(θ是參數(shù))所表示曲線經(jīng)過下列點(diǎn)中的(  )
A.(1,1)B.($\frac{2}{3}$,$\frac{1}{2}$)C.($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$)D.($\frac{2+\sqrt{3}}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案