8.若$\frac{π}{2}$<α<π,則直線$\frac{x}{sinα}$+$\frac{y}{cosα}$=1必不經(jīng)過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由$\frac{π}{2}$<α<π,可得sinα>0,cosα<0,直線$\frac{x}{sinα}$+$\frac{y}{cosα}$=1必經(jīng)過第一、三、四象限,即可得出.

解答 解:∵$\frac{π}{2}$<α<π,
∴sinα>0,cosα<0,
∴直線$\frac{x}{sinα}$+$\frac{y}{cosα}$=1必經(jīng)過第一、三、四象限,
因此比不經(jīng)過第二象限.
故選:B.

點(diǎn)評 本題考查了直線的截距式、三角函數(shù)值在各個象限的符號,考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow a=({-1,\sqrt{3}}),\overrightarrow b=({2,0})$,則向量$\overrightarrow b$在$\overrightarrow a$方向上的投影為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,∠BCA=90°,BC在BA的投影為BD(即CD⊥AB),如圖,有射影定理BC2=BD•BA.類似,在四面體P-ABC中,PA,PB,PC兩兩垂直,點(diǎn)P在底面ABC的射影為點(diǎn)O(即PO⊥面ABC),則△PAB,△ABO,△ABC的面積S1,S2,S3也有類似結(jié)論,則類似的結(jié)論是什么?這個結(jié)論正確嗎?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{4x+m}$(m>0),當(dāng)x1、x2∈R,且x1+x2=1時,總有f(x1)+f(x2)=$\frac{1}{2}$.
(1)求m的值.
(2)設(shè)Sn=f($\frac{0}{n}$)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n}{n}$),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知在△ABC的頂點(diǎn)A(3,3)、B(2,-2)、C(-7,1).
(1)求△ABC的面積;
(2)∠A的平分線AD所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{OA}$=(2,-1),$\overrightarrow{OB}$=(3,2),$\overrightarrow{OC}$=(M,2M+1),若點(diǎn)A,B,C能構(gòu)成三角形,
(1)求實(shí)數(shù)m滿足的條件;
(2)若△ABC為直角三角形,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xoy中,設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F,左準(zhǔn)線為l.P為橢圓C上任意一點(diǎn),直線OQ⊥FP,垂足為Q,直線OQ與l交于點(diǎn)A.
(1)若b=1,且b<c,直線l的方程為x=-$\frac{5}{2}$
(i)求橢圓C的方程
(ii)是否存在點(diǎn)P,使得$\frac{FP}{FQ}=\frac{1}{10}$?,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
(2)設(shè)直線FP與圓O:x2+y2=a2交于M,N兩點(diǎn),求證:直線AM,AN均與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)數(shù)列{(-1)n}的前n項(xiàng)和為Sn,則Sn等于$\left\{\begin{array}{l}{0,n為偶數(shù)}\\{-1,n為奇數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=1+2x,g(x)=$\frac{1}{{2}^{\left|x\right|}}$+3.
(1)求函數(shù)g(x)的值域;
(2)求滿足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

同步練習(xí)冊答案