14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的漸近線方程為y=$±\frac{1}{3}x$,則此雙曲線的離心率為( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{\sqrt{10}}}{3}$C.3D.$\sqrt{10}$

分析 求得雙曲線的漸近線方程為y=±$\frac{a}$x,由題意可得b=$\frac{1}{3}$a,由a,b,c的關(guān)系和離心率公式,計算即可得到所求值.

解答 解:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的漸近線方程為y=±$\frac{a}$x,
由題意可得$\frac{a}$=$\frac{1}{3}$,即b=$\frac{1}{3}$a,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{{a}^{2}+\frac{{a}^{2}}{9}}$=$\frac{\sqrt{10}}{3}$a,
可得e=$\frac{c}{a}$=$\frac{\sqrt{10}}{3}$.
故選:B.

點(diǎn)評 本題考查雙曲線的連線的求法,注意運(yùn)用雙曲線的方程和獎學(xué)金方程的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,已知a=1,b=$\sqrt{2}$,B=45°,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A為△ABC的一個內(nèi)角,且$sinA+cosA=\frac{{\sqrt{2}}}{3}$,則△ABC的形狀是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,圓C內(nèi)切于扇形AOB,$∠AOB=\frac{π}{3}$,若向扇形AOB內(nèi)隨機(jī)投擲600個點(diǎn),則落入圓內(nèi)的點(diǎn)的個數(shù)估計值為( 。
A.100B.200C.400D.450

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)與圓x2+y2=c2(c=$\sqrt{{a}^{2}+^{2}}$)交A、B、C、D四點(diǎn),若四邊形ABCD是正方形,則雙曲線的漸近線方程為( 。
A.y=±$\sqrt{1+\sqrt{2}}$xB.y=±$\sqrt{2}$xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{\sqrt{2}-1}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線y=$\frac{a}$x的垂直的直線l交雙曲線于A,B兩點(diǎn),若向量$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{m}$=(9,-$\frac{1}{3}$)平行,則雙曲線C的離心率等于 ( 。
A.$\frac{\sqrt{10}}{3}$B.$\frac{\sqrt{14}}{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.經(jīng)過雙曲線$\frac{{x}^{2}}{4}$-y2=1右焦點(diǎn)的直線與雙曲線交于A,B兩點(diǎn),若|AB|=4,則這樣的直線的條數(shù)為(  )
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,已知四邊形ABCD中,AB=CD=1,AD=$\sqrt{2}$BC=2,∠A+∠C=$\frac{3π}{4}$.則BD的長為$\frac{\sqrt{65}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.雙曲線$\frac{y^2}{9}-\frac{x^2}{b^2}=1$的離心率為2,則雙曲線的焦點(diǎn)到漸近線的距離是3$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案