A. | 4條 | B. | 3條 | C. | 2條 | D. | 1條 |
分析 根據(jù)題意,求得a、b的值,根據(jù)直線與雙曲線相交的情形,分兩種情況討論:①AB只與雙曲線右支相交,②AB與雙曲線的兩支都相交,分析其弦長的最小值,可得符合條件的直線的數(shù)目,綜合可得答案.
解答 解:由雙曲線$\frac{{x}^{2}}{4}$-y2=1,可得a=2,b=1.
若AB只與雙曲線右支相交時,AB的最小距離是通徑,
長度為$\frac{2^{2}}{a}$=1,
∵AB=4>1,∴此時有兩條直線符合條件;
若AB與雙曲線的兩支都相交時,此時AB的最小距離是實軸兩頂點的距離,
長度為2a=4,距離無最大值,
∵AB=4,∴此時有1條直線符合條件;
綜合可得,有3條直線符合條件.
故選:B.
點評 本題考查直線與雙曲線的關(guān)系,解題時可以結(jié)合雙曲線的幾何性質(zhì),分析直線與雙曲線的相交的情況,分析其弦長最小值,從而求解,可避免由弦長公式進(jìn)行計算.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2b}{a}$,+∞) | B. | ($\frac{a}$,+∞) | C. | [$\frac{a}$,+∞) | D. | [$\frac{a}$,$\frac{2b}{a}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{\sqrt{10}}}{3}$ | C. | 3 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+y2=4 | B. | (x+1)2+y2=2 | C. | (x+1)2+y2=1 | D. | (x+1)2+y2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2015}{2016}$ | B. | $\frac{4028}{2015}$ | C. | $\frac{4032}{2017}$ | D. | $\frac{2014}{2015}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com