分析 沿PB展開(kāi),使得A,F(xiàn),E共面,則AE⊥PB時(shí),AF+FE最小,求出AE,過(guò)P作AG⊥PC,則AG⊥平面PBC,∠AEG為AE與平面PBC所成角.
解答 解:沿PB展開(kāi),使得A,F(xiàn),E共面,則展開(kāi)圖中,AE⊥PB時(shí),AF+FE最小,此時(shí)
cos∠CPD=$\frac{\sqrt{6}}{3}$,sin∠CPD=$\frac{1}{3}$,∠CPA=30°,
∴cos∠APE=cos(∠CPD+30°)=$\frac{3\sqrt{2}-1}{6}$,
∴PE=$\frac{3\sqrt{2}-1}{3}$
由余弦定理可得AE=$\frac{\sqrt{19}}{3}$
∵PA⊥平面ABC,∠ACB=90°,
∴PC⊥BC,AC⊥BC,
∴BC⊥平面PAC,
過(guò)P作AG⊥PC,則AG⊥平面PBC,∠AEG為AE與平面PBC所成角,
∵PA=2,AC=$\frac{{2\sqrt{3}}}{3}$,∴PC=$\frac{4}{3}\sqrt{3}$,
由等面積可得2×$\frac{2\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$AG,∴AG=1,
∴AE與平面PBC所成角的正弦值=$\frac{AG}{AE}$=$\frac{3\sqrt{19}}{19}$.
故答案為:$\frac{3\sqrt{19}}{19}$.
點(diǎn)評(píng) 本題考查線面角,考查學(xué)生的計(jì)算能力,正確作出線面角是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±x | B. | y=±$\frac{{2\sqrt{2}}}{3}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{{3\sqrt{2}}}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com