15.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x-y+4≥0}\\{x≤a}\end{array}\right.$(a為常數(shù))表示的平面區(qū)域的面積是16,那么實(shí)數(shù)a的值為2.

分析 由約束條件作出可行域,由三角形的面積等于16列式求得a的值.

解答 解:由約束條件作出可行域如圖,

圖中陰影部分為等腰直角三角形,∴$S=\frac{1}{2}(a+2)•2(a+2)=16$,解得:a=2.
故答案為:2.

點(diǎn)評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{2}$ln(2x+1)-mx(m∈R).
(1)求函數(shù)f(x)=$\frac{1}{2}$ln(2x+1)-mx(m∈R)的單調(diào)區(qū)間;
(2)若函數(shù)2f(x)≤m+1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)f-1(x)為f(x)=$\frac{x}{2x+1}$的反函數(shù),則f-1(2)=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若曲線C在頂點(diǎn)為O的角α的內(nèi)部,A、B分別是曲線C上相異的任意兩點(diǎn),且α≥∠AOB,我們把滿足條件的最小角α叫做曲線C相對點(diǎn)O的“確界角”.已知O為坐標(biāo)原點(diǎn),曲線C的方程為y=$\left\{\begin{array}{l}{\sqrt{1+{x}^{2}},x≥0}\\{2-\sqrt{1-{x}^{2}},x<0}\end{array}\right.$,那么它相對點(diǎn)O的“確界角”等于( 。
A.$\frac{π}{3}$B.$\frac{5π}{12}$C.$\frac{7π}{12}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義運(yùn)算“•”如下:x•y=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若函數(shù)f(x)=m-(1-2x)•(2x-2)有兩個零點(diǎn),則( 。
A.m∈(-$\frac{1}{2}$,+∞)B.m∈(-$\frac{1}{2}$,1)C.m∈[-$\frac{1}{2}$,+∞)D.m∈[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列四個命題中是假命題的是( 。
A.在△ABC中,角A,B所對邊分別為a,b則sinA>sinB成立的充要條件是a>b
B.若命題p:?x∈(0,+∞),sinx-x<0,命題q:?x0∈(0,+∞),e${\;}^{{x}_{0}}$<0,則p∧¬q為真命題
C.若$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實(shí)數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$
D.在一個2×2列聯(lián)表中,由計(jì)算得k2=6.721,則有99%的把握確認(rèn)這兩個變量間有關(guān)系;可以參考獨(dú)立性檢驗(yàn)臨界表
P(K2≥k)0.0100.0050.001
k6.5357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某中學(xué)為了解高三學(xué)生數(shù)學(xué)課程的學(xué)習(xí)情況,從全部2000名學(xué)生的數(shù)學(xué)考試成績中隨機(jī)抽取部分學(xué)生的考試成績進(jìn)行統(tǒng)計(jì)分析,得到如下的樣本的頻率分布直方圖,已知成績在[80,90)的學(xué)生共有40人,則樣本中成績在[60,80)內(nèi)的人數(shù)為( 。
A.102B.104C.112D.114

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,平行六面體ABCD-A1B1C1D1中,以頂點(diǎn)A為端點(diǎn)的三條棱長都相等,且它們彼此的夾角都是60°;記AC1=λAB,則λ的值為( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.長時間用手機(jī)上網(wǎng)嚴(yán)重影響著學(xué)生的身體健康,某校為了解A,B兩班學(xué)生手機(jī)上網(wǎng)的時長,分別從這兩個班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機(jī)上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(Ⅰ)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計(jì),哪個班的學(xué)生平均上網(wǎng)時間較長;
(Ⅱ)從A班的樣本數(shù)據(jù)中隨機(jī)抽取一個不超過21的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機(jī)抽取一個不超過21的數(shù)據(jù)記為b,求a>b的概率.

查看答案和解析>>

同步練習(xí)冊答案