19.(1)計算2lg5+$\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$
(2)若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=\sqrt{7}$,求$\frac{{x+{x^{-1}}}}{{{x^2}+{x^{-2}}-3}}$的值.

分析 根據(jù)指數(shù)冪和對數(shù)的運算性質(zhì)化簡計算即可.

解答 (1)原式=2(lg5+lg2)+lg5(1+lg2)+(lg2)2=2+lg5+lg2(lg5+lg2)=2+lg5+lg2=2+1=3,
(2)∵${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=\sqrt{7}$,
∴x+x-1=5,
∴x2+x-2=23,
∴原式=$\frac{5}{23-3}$=$\frac{1}{4}$.

點評 本題考查了指數(shù)冪和對數(shù)的運算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等比數(shù)列{an}中,a1=$\frac{1}{2}$,S3=$\frac{3}{2}$,則公比q的值為1或-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,$f(x)=\sqrt{x}$
(1)求f(9)和f(-4);
(2)求f(x)的解析式;
(3)當(dāng)x∈A時,f(x)∈[-7,3],求區(qū)間A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知兩點A(0,-1),B(0,1),P(x,y)是曲線C上一動點,直線PA、PB斜率的平方差為1.
(1)求曲線C的方程;
(2)E(x1,y1),F(xiàn)(x2,y2)是曲線C上不同的兩點,Q(2,3)是線段EF的中點,線段EF的垂直平分線交曲線C于G,H兩點,問E,F(xiàn),G,H是否共圓?若共圓,求圓的標(biāo)準(zhǔn)方程;若不共圓,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知全集U=R,A={x|x≤0},B={x|x≥1},則集合∁U(A∪B)=( 。
A.{x|0<x<1}B.{x|0≤x≤1}C.{x|x≤1}D.{x|x≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.集合A={0,|x|},B={1,0,-1},若A⊆B,則x=±1;A∪B={-1,0,1};∁BA={-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.滿足{0,1}⊆P⊆{0,1,2,3,4,5}的集合P的個數(shù)是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|-1≤x≤6},B={x|m+1≤x≤3m-1}.
(1)若B⊆A,求實數(shù)m的取值集合C;
(2)求函數(shù)f(x)=x2-2ax+3,x∈C的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市組織高一全體學(xué)生參加計算機操作比賽,等級分為1至10分,隨機調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如表:
B校樣本數(shù)據(jù)統(tǒng)計表
成績(分)12345678910
人數(shù)(個)000912219630
(Ⅰ)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進行比較.
(Ⅱ) 記事件C為“A校學(xué)生計算機優(yōu)秀成績高于B校學(xué)生計算機優(yōu)秀成績”.假設(shè)7分或7分以上為優(yōu)秀成績,兩校學(xué)生計算機成績相互獨立.根據(jù)所給樣本數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率.

查看答案和解析>>

同步練習(xí)冊答案