11.已知m∈R,設(shè)命題p:不等式|m2-m|>6;命題q:函數(shù)$f(x)={x^3}+m{x^2}+(m+\frac{4}{3})x+2$在(-∞,+∞)上有極值.求使p且q為真命題的m取值范圍.

分析 若p真,解絕對值不等式,求出m的范圍,若q真,令f(x)的導(dǎo)函數(shù)的判別式大于0,求出m的范圍,再根據(jù)復(fù)合命題真值表求出p真、q真時(shí)m的范圍.

解答 解:若p為真命題,|m2-m|>6,
∴m2-m>6或m2-m<-6,
∴m>3或m<-2,
若q為真命題,|函數(shù)$f(x)={x^3}+m{x^2}+(m+\frac{4}{3})x+2$在(-∞,+∞)上有極值,
∴f'(x)=3x2+2mx+m+$\frac{4}{3}$=0有解,
∴△=4m2-12(m+$\frac{4}{3}$)>0.
解得m>4或m<-1,
根據(jù)復(fù)合命題真值表,若“P且q”為真命題,則命題P,命題q都是真命題,
則p∩q={m>4或m<-2}.

點(diǎn)評 該題重點(diǎn)考查了復(fù)合命題真假值表,另外又考了含絕對值不等式及一元二次不等次解法,在q命題真假的判斷上有考查了導(dǎo)函數(shù)為二次函數(shù)的一元三次函數(shù)在實(shí)數(shù)集R存在極值的充要條.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖是一個(gè)方程為$\frac{x^2}{4}$+y2=1的橢圓,則由過上、下頂點(diǎn)和兩焦點(diǎn)的四條直線圍成圖形的面積為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{1}{2}$x2-x-2lnx,則函數(shù)f(x)的單調(diào)遞增區(qū)間為( 。
A.(-∞,-1)(2,+∞)B.(2,+∞)C.(-∞,-1)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,其前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,b2S2=16,b3S3=60.求:
(Ⅰ)數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.曲線y=ex上的點(diǎn)到直線y=x的距離的最小值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{e}{2}$D.$\frac{{\sqrt{e}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}是等差數(shù)列,且a2+a5+a8=π,則sina5=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知大于1的任意一個(gè)自然數(shù)的三次冪都可寫成連續(xù)奇數(shù)的和.如:
若m是自然數(shù),把m3按上述表示,等式右側(cè)的奇數(shù)中含有2015,則m=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知命題“彐x∈R,2x2+ax≤$\frac{1}{2}$”是假命題,則a的取值范圍是(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.劉徽在他的《九章算術(shù)注》中提出一個(gè)獨(dú)特的方法來計(jì)算球體的體積:他不直接給出球體的體積,而是先計(jì)算另一個(gè)叫“牟合方蓋”的立體的體積.劉徽通過計(jì)算,“牟合方蓋”的體積與球的體積之比應(yīng)為4:π,即V:V=4:π.也導(dǎo)出了“牟合方蓋”的$\frac{1}{8}$體積計(jì)算公式,即$\frac{1}{8}$V=r3-V方蓋差,從而計(jì)算出V=$\frac{4}{3}π{r^3}$.記所有棱長都為r的正四棱錐的體積為V,則( 。
A.V方蓋差>VB.V方蓋差=V
C.V方蓋差<VD.以上三種情況都有可能

查看答案和解析>>

同步練習(xí)冊答案