13.已知全集U={1,2,3,4,5,6},集合A={2,3,5},B={1,3,4},則A∩(∁UB)=(  )
A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}

分析 根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:∵全集U={1,2,3,4,5,6},集合A={2,3,5},B={1,3,4},
∴∁UB={2,5,6},
則A∩(∁UB)={2,5},
故選:B

點(diǎn)評 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足${a_1}=511,{a_6}=-\frac{1}{2}$,且數(shù)列{an}的每一項(xiàng)加上1后成為等比數(shù)列.
(Ⅰ)求{an};
(Ⅱ)令bn=|log2(an+1)|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線與直線$\sqrt{3}x-y+1=0$平行,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.不等式$\frac{1}{x-1}$≤$\frac{1}{{x}^{2}-1}$的解集為( 。
A.(-∞,-1)B.[0,1)C.(-∞,-1)∪[0,1)D.(-1,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.閱讀如圖的程序框圖,當(dāng)該程序運(yùn)行后輸出的S值是(  )
A.12B.16C.24D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知p:x<m,q:1≤x≤3,若p是q的必要而不充分條件,則實(shí)數(shù)m的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)各項(xiàng)均為正數(shù)的無窮數(shù)列{an},{bn}滿足:對任意n∈N*都有2bn=an+an+1且an+12=bn•bn+1,
(1)求證:數(shù)列{$\sqrt{_{n}}$}是等差數(shù)列;
(2)設(shè)a1=1,a2=2,求{an}和{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),P是雙曲線在第一象限上的點(diǎn),$\overrightarrow{MO}$=$\overrightarrow{OP}$,直線PF2交雙曲線C于另一點(diǎn)N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線C的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC為銳角三角形,命題p:不等式logcosC$\frac{cosA}{sinB}$>0恒成立,命題q:不等式logcosC$\frac{cosA}{cosB}$>0恒成立,則復(fù)合命題p∨q、p∧q、¬p中,真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案