計(jì)算
34
•16
1
3
+lg
1
100
的值為
 
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:計(jì)算題
分析:根據(jù)指數(shù)冪和對(duì)數(shù)的運(yùn)算法則進(jìn)行計(jì)算即可.
解答: 解:
34
•16
1
3
+lg
1
100
=4
1
3
4
2
3
+lg10-2=4-2=2.
故答案為:2
點(diǎn)評(píng):本題主要考查分?jǐn)?shù)指數(shù)冪和對(duì)數(shù)的計(jì)算,要求熟練掌握指數(shù)冪的運(yùn)算法則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)g(x)=ax2-2ax+b+1(a>0)在區(qū)間[2,3]上有最大值4,最小值1.
(1)求函數(shù)g(x)的解析式;
(2)設(shè)f(x)=
g(x)
x
.若f(2x)-k•2x≥0在x∈[-1,1]時(shí)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC,若有∠A>∠B,則下列不等式中
①sin∠A>sin∠B; ②cos∠A<cos∠B; ③sin2∠A>sin2∠B; ④cos2A<cos2∠B
你認(rèn)為正確的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=
1
2
,
2
an+1
=
1
an
+
1
an+2
(n∈N*)
,則a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈(-∞,-1],不等式(m-m2)•2x+1>0恒成立,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
16-4x
+log2(2x+1)
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過x軸正半軸上一點(diǎn)M(x0,0),作圓C:x2+(y-
2
)2=1
的兩條切線,切點(diǎn)分別為A,B,若|AB|≥
3
,則x0的最小值為(  )
A、1
B、
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)?x∈R,有f(x+2)=f(x)+f(1),且當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(|x|+1)在R上恰有六個(gè)零點(diǎn),則a的取值范圍是( 。
A、(0,
5
5
B、(
5
5
,1)
C、(
5
5
,
3
3
)
D、(
3
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+x,g(x)=f(x)+lnx,a∈R.
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=0時(shí),記h(x)=g(x)-
1
2b
x2-x(b∈R且b≠0),求h(x)在定義域內(nèi)的極值點(diǎn);
(Ⅲ)?x1,x2∈[1,+∞)且x1<x2,都有f(x1)-f(x2)<lnx2-lnx1成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案