分析 P:方程X2+mX+m+3=0有一正一負兩根,可得$\left\{\begin{array}{l}{△={m}^{2}-4(m+3)>0}\\{m+3<0}\end{array}\right.$,解得m范圍.q:不等式mX2+2X+1>0恒成立,m=0時不滿足題意,舍去;當m≠0時,$\left\{\begin{array}{l}{m>0}\\{△=4-4m<0}\end{array}\right.$,解得m范圍.如果p或q為真,p且q為假,可得p與q必然一真一假即可得出.
解答 解:P:方程X2+mX+m+3=0有一正一負兩根,∴$\left\{\begin{array}{l}{△={m}^{2}-4(m+3)>0}\\{m+3<0}\end{array}\right.$,解得m<-3.
q:不等式mX2+2X+1>0恒成立,m=0時不滿足題意,舍去;當m≠0時,$\left\{\begin{array}{l}{m>0}\\{△=4-4m<0}\end{array}\right.$,解得m>1.
如果p或q為真,p且q為假,
∴p與q必然一真一假,∴$\left\{\begin{array}{l}{m<-3}\\{m≤1}\end{array}\right.$或$\left\{\begin{array}{l}{m≥-3}\\{m>1}\end{array}\right.$,
解得m<-3或m>1.
∴m的取值范圍是m<-3或m>1.
點評 本題考查了一元二次方程有實數根與判別式的關系、一元二次不等式的解集與判別式的關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{121}{25}$ | B. | $\frac{81}{16}$ | C. | $\frac{16}{9}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com