11.雙曲線(xiàn)$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{9}$=1的漸近線(xiàn)方程是( 。
A.y=±$\frac{2}{3}$xB.y=±$\frac{4}{9}$xC.y=±$\frac{3}{2}$xD.y=±$\frac{9}{4}$x

分析 直接根據(jù)雙曲線(xiàn)的方程,令方程的右邊等于0求出漸近線(xiàn)的方程.

解答 解:已知雙曲線(xiàn)$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{9}$=1
令:$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{9}$=0
即得到漸近線(xiàn)方程為:y=±$\frac{2}{3}$x
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)要點(diǎn):雙曲線(xiàn)的漸漸線(xiàn)方程的求法,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x3-x2+x+1,
(1)求函數(shù)在點(diǎn)(1,2)處的切線(xiàn)
(2)求函數(shù)在點(diǎn)(1,2)處的切線(xiàn)與函數(shù)g(x)=x2圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果數(shù)列{an}中任意連續(xù)三項(xiàng)奇數(shù)項(xiàng)與連續(xù)三項(xiàng)偶數(shù)項(xiàng)均能構(gòu)成一個(gè)三角形的邊長(zhǎng),則稱(chēng){an}為“亞三角形”數(shù)列;對(duì)于“亞三角形”數(shù)列{an},如果函數(shù)使得y=f(x)仍為一個(gè)“亞三角形”數(shù)列,則稱(chēng)y=f(x)是數(shù)列{an}的一個(gè)“保亞三角形函數(shù)”(n∈N*).記數(shù)列{an}的前項(xiàng)和為Sn,c1=2016,且5Sn+1-4Sn=10080,若g(x)=lgx是數(shù)列{cn}的“保亞三角形函數(shù)”,則數(shù)列{cn}的項(xiàng)數(shù)的最大值為(  )(參考數(shù)據(jù):lg2≈0.30,lg2016≈3.304}.
A.33B.34C.35D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.焦點(diǎn)為(0,±3)且與雙曲線(xiàn)$\frac{x^2}{2}$-y2=1有相同的漸近線(xiàn)的雙曲線(xiàn)方程是$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{6}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1、F2,離心率為$\frac{\sqrt{3}}{3}$,點(diǎn)M在橢圓上,且滿(mǎn)足MF1⊥x軸,|MF1|=$\frac{4\sqrt{3}}{3}$.
(1)求橢圓的方程;
(2)若直線(xiàn)y=kx+2交橢圓于A、B兩點(diǎn),求△ABO(O為坐標(biāo)原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$,短軸頂點(diǎn)B(0,b),若橢圓內(nèi)接三角形BMN的重心是橢圓的左焦點(diǎn)F,求橢圓的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=x2-2ax+5
(1)若不等式f(x)>0對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(2)若a>1,且函數(shù)f(x)的定義域和值域均為[1,a],求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)P是函數(shù)y=sin(x+θ)圖象與x軸的一個(gè)交點(diǎn),A,B為P點(diǎn)右側(cè)同一周期上的最大和最小值點(diǎn),則$\overrightarrow{PA}•\overrightarrow{PB}$=(  )
A.$\frac{{\sqrt{3}{π^2}}}{4}-1$B.$\frac{{3{π^2}}}{4}-1$C.$\frac{{3{π^2}}}{2}-1$D.$\frac{π^2}{2}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在平面四邊形ABCD中,AB=5$\sqrt{2}$,∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(1)求△ABC的面積S△ABC;
(2)求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案