11.函數(shù)y=$\frac{3}{2}$cos5x的最大值為( 。
A.1B.$\frac{3}{2}$C.$\frac{15}{2}$D.5

分析 根據(jù)余弦函數(shù)的性質(zhì)求出cos5x的最大值,從而求出y的最大值即可.

解答 解:∵cos5x≤1,
∴y=$\frac{3}{2}$cos5x≤$\frac{3}{2}$,
故選:B.

點評 本題考查了余弦函數(shù)問題,熟練掌握余弦函數(shù)的性質(zhì)是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2x+1,數(shù)列{an},{bn}分別滿足an=f(n),bn=f(bn-1).且b1=1,
(1)分別求{an},{bn}的通項公式;
(2)記cn=($\frac{{a}_{n}}{_{n}+1}$),求數(shù)列{cn}的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0),且函數(shù)f(x)的部分圖象如圖所示,則有(  )
A.f(-$\frac{3π}{4}$)<f($\frac{5π}{3}$)<f($\frac{7π}{6}$)B.f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$)<f($\frac{5π}{3}$)C.f($\frac{5π}{3}$)<f($\frac{7π}{6}$)<f(-$\frac{3π}{4}$)D.f($\frac{5π}{3}$)<f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知奇函數(shù)f(x)當(dāng)x>0時的解析式為f(x)=$\frac{1}{{x}^{2}+1}$,則f(-1)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(4,5cosα),$\overrightarrow$=(3,-4tanα),α∈(0,$\frac{π}{2}$),且$\overrightarrow{a}$⊥$\overrightarrow$;
(1)求|$\overrightarrow{a}$$+\overrightarrow$|;
(2)求$\frac{2sinαcosα}{sinα+cosα-1}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象上的一個最高點坐標(biāo)為($\frac{5π}{12}$,2),直線x=x1和x=x2是函數(shù)f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)-$\frac{π}{6}$≤x≤$\frac{7π}{6}$時,求函數(shù)g(x)=f(x)-1的零點;
(3)設(shè)A={x|$\frac{π}{4}$≤x≤$\frac{π}{2}$},B={x||f(x)-m|<1},若A⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知|$\overrightarrow{a}$|=11,|$\overrightarrow$|=23,|$\overrightarrow{a}$-$\overrightarrow$|=30,則|$\overrightarrow{a}$+$\overrightarrow$|=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè){an}為等差數(shù)列,Sn表示它的前n項和,已知對任何正整數(shù)n均有Sn=$\frac{{{a}_{n}}^{2}}{6}$+$\frac{3}{2}$n,求:
(1)數(shù)列{an}首項a1
(2)數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x)=$\left\{\begin{array}{l}{4{x}^{3}+6{x}^{2}+2(x≤0)}\\{2{e}^{ax}(x>0)}\end{array}\right.$在區(qū)間[-2,2]上最大值為4,則實數(shù)a的取值范圍為( 。
A.[$\frac{1}{2}$ln2,+∞]B.[0,$\frac{1}{2}$ln2]C.(-∞,0]D.(-∞,$\frac{1}{2}$ln2]

查看答案和解析>>

同步練習(xí)冊答案