分析 (1)根據(jù)線面平行的判定定理證明GH∥平面ABC;
(2)根據(jù)面面垂直的判定定理即可證明平面BCD⊥平面PAC.
解答 證明:(1)連結(jié)DE,
在△BDE中,G,H分別是BD,BE的中點(diǎn),
∴GH為△BDE的中位線,
∴GH∥DE.
在△PAC,D,E分別是PA,PC的中點(diǎn),
∴DE是△PAC的中位線,
∴DE∥AC,
∴GH∥AC.
∵GH?平面ABC,
∴GH∥平面ABC.
(2)∵AB=PB,
∴BD⊥PA,
∵∠PBC=∠ABC=90°,
∴PC=AC,
∴CD⊥PA,
∴PA⊥平面BCD,
∴平面BCD⊥平面PAC.
點(diǎn)評(píng) 本題主要考查空間直線和平面平行以及平面和平面垂直的判定,要求熟練掌握相應(yīng)的判定定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,0) | B. | (0,1) | C. | [-1,1] | D. | [-2,2] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com